GC41A-1065
Factors Contributing to Extremely Wet Winters in California

Thursday, 17 December 2015
Poster Hall (Moscone South)
Bor-Ting Jong, Columbia University of New York, Palisades, NY, United States; Lamont -Doherty Earth Observatory, Palisades, NY, United States, Mingfang Ting, Lamont Doherty Earth Observ, Palisades, NY, United States and Richard Seager, Lamont Doherty Earth Obs, Palisades, NY, United States
Abstract:
As California continues to battle the severe drought conditions, it becomes increasingly important to understand the atmospheric and oceanic conditions that may possible break this ongoing drought. Is a strong El Niño, such as the 2015/16 event, enough to break the drought? We examine in this study the possible factors that lead to extremely wet winters (the wettest 15%) in both Northern and Southern CA. The relationships between CA winter precipitation and sea surface temperature conditions in the Pacific, as well as atmospheric circulation are determined by using observational and reanalysis data from 1901 to 2010. One of the key features of the atmospheric circulation is the location of the low pressure anomaly, whether caused by El Niño or other factors. If the anomaly locates right off the US west coast, CA tends to be wet, and vice versa. Furthermore, the duration of the circulation anomaly seems to be crucial. During wet El Niño winters, the peak of the circulation anomaly is in the late winter, whereas, during non-wet El Niño winters, the peak of the anomaly is in the early winter. Thus, an El Niño that can last to late winter is more likely to cause an extremely wet winter in the state. The intensity of El Niño is another critical factor. In the wettest tercile late winter, a strong El Niño can bring about 200% of climatological precipitation to CA, while a weak El Niño can bring only less than 150% of climatology. In combination, only a strong El Niño that can last to late winter may make extremely wet winters very likely in CA. To explore the other factors, composites of circulation anomaly during wet & non-El Niño winters were also analyzed. The results show that a zonally propagating wave train, originating from western North Pacific, contributes to low pressure center and wet winter conditions in the state. Thus, coastal low pressure anomaly is a consistent feature for an extremely wet winters in California, but the origin of forcing can come from both tropics and mid-latitude.