A23B-0295
Lidar measurements of the column CO2 mixing ratio made by NASA Goddard’s CO2 Sounder during the NASA ASCENDS 2014 Airborne campaign.

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Anand K Ramanathan1, Jianping Mao2, James Brice Abshire2 and Stephan R Kawa2, (1)Earth System Science Interdisciplinary Center, COLLEGE PARK, MD, United States, (2)NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
Remote sensing measurements of CO2 from space can help improve our understanding of the carbon cycle and help constrain the global carbon budget. However, such measurements need to be sufficiently accurate to detect small (1 ppm) changes in the CO2 mixing ratio (XCO2) against a large background (~ 400 ppm). Satellite measurements of XCO2 using passive spectrometers, such as those from the Japanese GOSAT (Greenhouse gas Observing Satellite) and the NASA OCO-2 (Orbiting Carbon Observatory-2) are limited to daytime sunlit portions of the Earth and are susceptible to biases from clouds and aerosols. For this reason, NASA commissioned the formulation study of ASCENDS a space-based lidar mission. NASA Goddard Space Flight Center’s CO2 Sounder lidar is one candidate approach for the ASCENDS mission.

The NASA GSFC CO2 Sounder measures the CO2 mixing ratio using a pulsed multi-wavelength integrated path differential absorption (IPDA) approach. The CO2 Sounder has flown in the 2011, 2013 and 2014 ASCENDS airborne campaigns over the continental US, and has produced measurements in close agreement with in situ measurements of the CO2 column. In 2014, the CO2 Sounder upgraded its laser with a precision step-locked diode laser source to improve the lidar wavelength position accuracy. It also improved its optical receiver with a low-noise, high efficiency, HgCdTe avalanche photo diode detector. The combination of these two technologies enabled lidar XCO2 measurements with unprecedented accuracy.

In this presentation, we show analysis from the ASCENDS 2014 field campaign, exploring: (1) Horizontal XCO2 gradients measured by the lidar, (2) Comparisons of lidar XCO2 measurements against the Parameterized Chemistry Transport Model (PCTM), and (3) Lidar column water vapor measurements using a HDO absorption line that occurs next to the CO2 absorption line. This can reduce the uncertainty in the dry air column used in XCO2 retrievals.