DI13B-2667
2D Dynamic Models of Subduction: Links between Surface Plate Motion and Deformation in the Transition Zone from Observations of Deep Slab Seismicity

Monday, 14 December 2015
Poster Hall (Moscone South)
Katrina Arredondo and Magali I Billen, University of California Davis, Davis, CA, United States
Abstract:
Observations of seismicity and seismic tomography provide constraints on the geometry of slabs within mantle, while compression/tension axis derived from moment tensor solutions provide constraints on the internal deformation of slabs. However, since these observations provide only a somewhat blurred or incomplete snapshot of the slab in time, it is difficult to directly relate these observations to the evolution of the slab geometry and the forces acting on and within the slab. In contrast, plate tectonic reconstructions provide time-dependent constraints on the surface motion of plates and the trench at subduction zones, which are related to the dynamical evolution of the slab. We use 2D geodynamical simulations of subduction to explore the relationship between dynamical process within the deforming slab and the observations of surface plate motion and the state-of-stress in slabs. Specifically we utilize models that include the extended Boussinesq approximation (shear heating and latent heat terms in the energy equation), a layered lithosphere with pyrolite, harzburgite and basalt/eclogite, compositionally-dependent phase transitions, and a composite rheology with yielding. The models employ a weak crustal layer that decouples the overriding and subducting plates and allows for dynamically determined trench motion. Here we show that, 1) multiple phase transitions increase slab folding, 2) ridge push significantly increases trench retreat, and 3) strength of the weak crustal layer influences slab detachment. Compared to past studies a more realistic treatment of the phase transitions makes trench retreat more difficult to generate: a weaker plate may encourage slab retreat but detaches once the slab tip crosses into the transition zone due to the rapid increase in slab density. As suggested by previous studies, slab folding within the transition zone changes the direction of forces on the slab and causes periodic changes from trench retreat to trench advance. We also present results comparing the observations of slab seismicity, strain-rate and stress-orientation to time-dependent model predictions. These analyses provide links between the observations and the physical processes active in the deforming slab, and facilitate a more in-depth understanding of the observed variations among slabs.