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Magnetotail reconnection drives narrow (1 Re) 
Earthward injection flow channels: 

Bring particles Earthward
And drive waves ! 

Plasma Injections Into the Inner 
Magnetosphere [Wiltberger+ 2015]
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[Malaspina+ 2015]

Phase space holes

e- solitary structures

double layers

Kinetic Alfven waves

Nonlinear whistlers

Waves at Plasma Boundaries (burst mode data)

Kinetic waves + structures confined near plasma boundaries 
(injections, plasma sheet edge, plasmapause)



Kinetic waves + structures in CRESS data

Waves at Plasma Boundaries (burst mode data)



[Malaspina+ 2014]

[Chaston+ 2015]

Kinetic structures
+ KAW

Kinetic Alfven
Waves

Distributions

[Malaspina+ 2015]

Nearly all boundaries have kinetic 
structures AND nearly all kinetic 
structures appear at boundaries

(Injections, plasma sheet inner edge, 
plasmapause)



[Mozer+ 2014] Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt 
Energies to Megavolts by Nonlinear Whistlers

[Artemyev+ 2015] Electron trapping and acceleration by kinetic Alfven waves in the inner 
magnetosphere (JGR)

[Osmane+ 2016] On the connection between microbursts and nonlinear electronic structures 
in planetary radiation belts (APJ)

[Chaston+ 2016] Driving ionospheric outflows and magnetospheric O+ energy density with 
Alfvén waves

[Vasko+ 2017] Diffusive scattering of electrons by electron holes around injection fronts

[Mozer+ 2017] Pulsating auroras produced by interactions of electrons and time domain 
Structures (JGR)

[Chaston+ 2017] Radial transport of radiation belt electrons in kinetic field-line resonances

Impacts

Kinetic Structures and Waves:
Scatter, Transport, and Accelerate the ~few keV and Seed (10 keV – 100 keV) populations 



Big Picture

[1] The inner magnetosphere is full of kinetic electric field structures and nonlinear waves 
[Mozer+ 2013, 2014,2015, Agapitov+ 2015, Osmane+ 2014, 2016, Malaspina+ 2014, 2015, 
Chaston+ 2014, 2015, 2016, Vasko+ 2015, 2016a,b, 2017a,b,c, Artemyev+ 2015]

[2] Quantifying how these waves / structures impact the plasma requires a census: 

[a] Which waves/structures are most prevalent?
[b] What are their properties (amplitudes, spatial scales)?
[c] Where are their preferred growth regions? 

[3] A census requires: 

[a] lots of time-domain fields burst data (non-unique spectral signatures)
[b] automated identification algorithms 

[4] In this work, we: 

[a] Identify periods of unbroken burst data
[b] Develop and apply ID algorithms
[c] Reveal the zoo of waves/structures and their properties, statistically



21 Dec. 2016  
Van Allen Probe B

Electron injection
- MeV flux ~steady
- Dispersionless e- increase

Fields burst systems:
- EFW B1 

- 6V, 3 SCM @ 16.4 k sample/s
- scientist-selected interval

- EFW B2
- 6V, 3E, 3 SCM @ 16.4 k sample/s
- s/c selected 6 s bursts

- EMFISIS Trig. 
- 3E, 3 SCM @ 35 k sample/s
- s/c selected 6 s bursts

- EMFISIS Continuous 
- 3E, 3 SCM @ 35 k sample/s
- timed 0.5 s bursts (each 15 min)

This event: 
- 45 min of unbroken B1 coverage !



Particle Injection

Perpendicular electrons: 
300 keV e- near front
traveled at least 6 Re

Parallel electrons:  
10 keV e- near front
local e- caught in flow
(accelerated locally?)

“Dispersionless” injection
shows dispersion of anisotropy 

Consistent with: Injection far Earthward 
of plasma sheet inner boundary 
(Assume conservation of μ)

Flux || 8.18◦, 24.5◦, 155.45◦, 171.8◦
-------- = ------------------------------------
Flux prp.   90◦



Particle Injection

Behind the front: 
300 keV e- are local
(closed drift paths)
did not travel with the front

Behind the front: 
10 keV e- traveled with front
(but not very far)



Injection as wave driver

Four distinct Bz enhancements

Each drives a full spectrum of waves 
- ECH
- whistler-mode
- KAW
- phase space holes 



> 2fce 
(ECH)

fce < f < 2 fce
(ECH)

0.5 fce < f < fce
(UB Whistler-mode)

0.1 fce < f < 0.5 fce
(LB Whistler-mode)

f < 0.1 fce
(Kinetic Alfven)

Electron Flux 
(~30 keV)

|B| and Bz

Injection as wave driver

Each Bz enhancement 
drives full spectrum of 
waves 



Kinetic Alfven waves
(Chaston+ 2014, 2016)

Nonlinear whistler-
mode waves
(Mozer+ 2013)

A Zoo of waves

Phase space holes
(Mozer+ 2013
Osmane + 2017
Artemyev+ 2014)

Phase space holes with
|B| spikes
(Malaspina+ 2014
Vasko+ 2015)



Electron Holes

Compare hole properties
- Burst 1 (this work)        ~4,200 EH
- Burst 2 [Vasko+ 2017] ~100 EH

[Vasko+ 2017] EH Diffusion coeff (lead factor):

Burst 1 holes:
- shallower ‘typical’ potential

- Implies 10x to 100x weaker diffusion
than estimated using triggered bursts

What about event-to-event variation?



Nonlinear Whistler-Mode Waves 

Lower-band whistler-mode waves
- Both E and B show harmonics

- signals at 2f for waves at f

- Harmonics above f only

- Distorted waveforms indicate
strong harmonics 

- Harmonics more electrostatic
than primary waves

- not strong enough to be noticed
in SCM time-series, but often exist

Bu, Bv, Bw

Eu, Ev, Ew



Nonlinear Whistler-Mode Waves 

Harmonic vs. Primary signals

3,192 of the 5,400 intervals (0.5 s each) 
are dominated by whistler-mode waves

E-field harmonics:
E2f increases with Ef

E2f as large as 14% of Ef

E2f observable for waves > 1 mV/m

B-field harmonics:
B2f increases with Bf

B2f as large as 3% of Bf

B2f observable for waves > 0.1 nT

(amplitudes from sum of spectral data, 
bandpass of +/- 100 Hz about f or 2f)

Nonlinear behavior is common, 
not exceptional, 

for lower band whistler-mode waves



Conclusions

[1] The studied injection transported e- at least 6 RE

from plasma sheet into inner magnetosphere

[2] This injection had four separate magnetic compressions  
Each compression drove waves across the observed spectrum 

[3] A zoo of nonlinear waves and kinetic structures are observed 
(though not all previously identified were found)

[4] ‘Typical’ phase space holes are weaker than estimated using triggered burst data
degree of event-to-event variation? 

[5] Lower band whistler-mode waves show amplitude-dependent nonlinearities (harmonics)  
These harmonics are common over a range of amplitudes

[6] Statistical study under way
Are there ‘typical’ wave / structure properties at these boundaries? 
How is injection energy partitioned into various wave types? 

[7] How important are these structures/waves for the inner magnetosphere?



Fin



Instrumental Harmonics?

Black:    E2f vs. Ef (from earlier figure)

Green:   E2f vs. Ef (assuming -40 dB of instrumental 
harmonic distortion)

Black:    B2f vs. Bf (from earlier figure)

Red:      B2f vs. Bf (for upper band whistler-mode
waves, when upper band is stronger 
than lower band)



Instrumental Harmonics?

Harmonics in the electronics? 
THD = total harmonic distortion = 2f + 3f + 4f …

- EFW receiver board verified ~ -70 dB THD
- EFW preamps, bias board verified ~ -40 dB THD

- SCM sensor (?) 
- No strong B2f for upper band waves

Harmonics in the plasma sheath? 

- SCM has no plasma sheath effect

- E2f envelope does not follow Ef envelope
(expected for sheath harmonic [Boehm+ 1994])

Eliminated electronics, sheath, left with: 
Harmonics are real !



Instrumental Harmonics?

- E2f envelope does not follow Ef envelope


