

Multi-Year Observations of Ultra-Relativistic Electrons with the Van Allen Probes Mission

Daniel N. Baker Laboratory for Atmospheric and Space Physics University of Colorado – Boulder

Collaborators: V. Hoxie, H. Zhao, X.Li, A. Jaynes, S. Kanekal, and ECT Team

Photo taken at U.S. National Academy Building (31 January 1958)

> Explorer 1 Launch

PHYSICS TODAY I DECEMBER 2017

Baker & Panasyuk <u>Phys. Today</u>, December 2017 REPT Monthly Average Proton Flux (October 2013 – August 2016)

Courtesy: Xinlin Li

REPT Observations:

Acceleration, Remanence, and Sudden Loss

Oct2012 Jul2013 Apr2014 Jul2015 Oct2015 Oct2016 Apr2017 Jul2017 Oct2017 Jan2013 Apr2013 Oct2013 Jan2014 Jul2014 Oct2014 Jan2015 Apr2015 Jan2016 Apr2016 Jul2016 Jan2017

RBSP ECT-REPT A & B 1.8 MeV Electron fluxes, L vs Time, 9/1/2012 - 11/10/2017

Radiation Belt Electron Bump-On-Tail Distribution and Its Origin from Hiss Induced Scattering

2015/03/20-03/30 Comparisons

Top:BOT observationsBottom:BOT simulations

Work led by Hong Zhao and B.Ni

[Courtesy of B. Ni, Wuhan University]

<u>Hiss Indu</u>	iced Scattering	2015/03/20-03/30
Тор:		10-day Hiss wave data
Middle:	$< D_{\alpha\alpha} >$ at loss cone	at three time intervals
Bottom:	2-D plot of <d<sub>o</d<sub>	α^{α} > at one time interval

Electron Acceleration Sequence in the Inner Magnetosphere

Source: 10's of keV Seed: 100's of keV Rad Belt: > 1 MeV

Crucial Role for Magnetopheric Substorms

Jaynes et al. (JGR, 2015)

RBSP ECT-REPT A & B 3.4 MeV Electron fluxes, L vs Time, 9/1/2012 - 11/10/2017

2

Oct2012 Jan2013 Apr2013 Jul2013 Oct2013 Jan2014 Apr2014 Apr2015 Jul2015 Oct2015 Jan2016 Jul2016 Oct2016 Jan2017 Apr2017 Jul2017 Oct2017 Jul2014 Oct2014 Jan2015 Apr2016

REPT – The Movie

Jan2013 Apr2013 Jul2013 Oct2013 Jan2014 Apr2014 Jul2014 Oct2014 Jan2015 Apr2015 Jul2015 Oct2015 Jan2016 Apr2016 Jul2016 Oct2016 Jan2017 Apr2017 Jul2017 Oct2017

Oct2012

REPT – 2015 to 2017

RBSP ECT-REPT A & B 5.2 MeV Electron fluxes, L vs Time, 9/1/2012 - 11/10/2017

Conclusions

- Results from the Van Allen Probes mission demonstrate remarkable, previously unobserved features about radiation belt structure, acceleration, transport, and rapid loss.
- Long-term observations reveal distinctive behavior: Multibelt structure and impenetrable barrier to inward penetration of ultra-relativistic electrons at L ~2.8: No cases of high fluxes of E > 1.5 MeV electrons inside of L ~ 2.5 in over five years of measurements.
- Van Allen Probes data clearly show there are extended periods of gradual change in the (super- and ultra-) relativistic electron populations punctuated by abrupt losses and rapid subsequent acceleration.
- REPT instruments show that ultra-relativistic electrons were low around 2014 sunspot max and have now been increasing dramatically due to strong solar wind streams in declining sunspot phase (southern solar hemisphere).

Questions?

The Geospace Observatory Fleet

