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Space Weather Hazard

• Relativistic electrons are an 

important space weather hazard

• They can penetrate satellite 

surfaces and embed themselves 

in insulating materials

• The charge can build up and 

eventually exceed breakdown 

levels

• The subsequent discharge can 

damage components and even 

destroy a satellite

satellite surface

insulating material
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Motivation

• Modern satellites have a life expectancy of 10-20 years 

• Satellite operators and engineers therefore require realistic estimates 

of the worst case environments that may occur on these and longer 

timescales

• Satellite insurers also require this information to help them evaluate 

realistic disaster scenarios

• From a scientific point of view it is interesting to know

• How large the fluxes might become during an extreme event

• Is there a limit to the fluxes ?



• The objective of this study is to calculate the 1 in 10 and 1 in 100 year 

relativistic electron fluxes throughout the Earth’s outer radiation belt

Objective



INTEGRAL IREM

• The data used in this study were 

collected by the Radiation 

Environment Monitor (IREM) on 

board ESA’s INTEGRAL satellite

• INTEGRAL was launched into 

HEO on 17th October 2002

• Use data from October 2002 to 

31st December 2016 Orbital Parameters
Apogee:  153,000 km
Perigee:    9,000 km
Inclination:  52.25o

Period: 71.8 h

credit: ESA

INTEGRAL Satellite



• IREM is a modified version of ESA SREM - a space-dedicated detector 

assembly designed to measure high energy electrons and protons. 

• IREM count-rates Ci are given by the convolution of the incident proton 

and electron differential fluxes and the corresponding response 
functions
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• For the calculation of IREM electron fluxes we applied the SVD-based 

scheme developed by Sandberg et al. [2012]

• We developed scaling factors for the electron fluxes using a large 

number (400) of magnetic conjunctions between INTEGRAL/IREM and 

Van Allen probe B/MagEIS

Data Analysis



• INTEGRAL has a highly evolving 

orbit with variable inclination and 

eccentricity

• Use data within 15o of magnetic 

equator

• Analyse data as a function of 

energy and L* in the range

• 0.69 ≤ E ≤  2.05 MeV

• 4.0 ≤ L* ≤ 6.75

Data Analysis

Satellite Coverage



• The coverage is good, but not 

identical, at all L* values

• The coverage ranges from a 

minimum of 1042 data points 

at L* = 4.0 to a maximum of 

1245 data points at L* = 6.5

• This corresponds to a 

minimum and maximum data 

coverage of 8.5 and 10.2 

years respectively

Coverage



• To inspect the data we 

produced annual summary 

plots 

• We plotted the IREM data at 2 

representative L* values 

together with the GOES          

E > 2 MeV fluxes

• Data confirmed to be very 

clean and no outliers were 

found 

Summary Plots



Exceedance Probability at L* = 6.0

• At L* = 6.0, representative of 

geosynchronous orbit

• fluxes cover three orders of 

magnitude

• largest observed fluxes range 

from 1.4x105 cm-2s-1sr-1MeV-1

at E = 2.05 MeV to 

4.6x106 cm-2s-1sr-1MeV-1

at E = 0.69 MeV



Exceedance Probability at L* = 4.5

• At L* = 4.5, representative of the 

location of the peak in the fluxes 

in GNSS type orbits

• fluxes cover three orders of 

magnitude

• largest observed fluxes range 

from 5.6x105 cm-2s-1sr-1MeV-1

at E = 2.05 MeV to 

1.4x107 cm-2s-1sr-1MeV-1

at E = 0.69 MeV



• We perform extreme value analysis using the exceedances over a high 

threshold method

• For this approach the appropriate distribution function is the 

Generalised Pareto Distribution (GPD) 

• We decluster the data to avoid counting individual events more than 

once and fit the GPD to the cluster maxima

Extreme Value Analysis



• The GPD may be written in the form

G(x-u) = 1 – (1+ ξ(x-u)/σ)-1/ξ

where: x are the cluster maxima above the chosen threshold u

ξ is the shape parameter which controls the behaviour of the tail

σ is the scale parameter which determines the dispersion or 

spread of the distribution

• We fit the GPD to the tail of the distribution using maximum likelihood 

estimation 

Generalised Pareto Distribution



• Our major objective is to determine the 1 in N year space weather 

event

• The flux that is exceeded on average once every N years can be 

expressed in terms of the fitted parameters σ and ξ as:

xN = u + (σ/ξ)(Nndnc/ntot)
ξ – 1))

where nd is the number of data points in a given year,  nc is the number 

of cluster maxima and ntot is the total number of data points

• A plot of xN against N is known as a return level plot

Determination of the 1 in N Year Event



• 1 in 10 year flux

• 1.21x106 cm-2s-1sr-1MeV-1

Return Level Plot for 0.99 MeV Electrons at L* = 6.0



• 1 in 10 year flux

• 1.21x106 cm-2s-1sr-1MeV-1

• 1 in 100 year flux

• 1.36x106 cm-2s-1sr-1MeV-1

Return Level Plot for 0.99 MeV Electrons at L* = 6.0



• At L* = 6.0, representative of 

geosynchronous orbit, we find:

• 1 in 10 year flux ranges from 

4.4x106 cm-2s-1sr-1MeV-1

at E = 0.69 MeV to                    

1.2x105 cm-2s-1sr-1MeV-1

at E = 2.05 MeV

• 1 in 100 year flux is a factor 

of 1.1 to 1.4 times larger than 

the 1 in 10 year flux 

L* = 6.0



• The analysis shows that the 

electron fluxes generally tend 

to limiting values

• The limiting fluxes at L* = 6.0 

are up to a factor of 1.5 times 

larger than the 1 in 10 year 

fluxes

Limiting Fluxes



• The limiting fluxes at L* = 6.0 

are in good agreement with 

those from the LANL study 

O’Brien et al. [2007] 

Comparison with O’Brien et al. [2007]



• The largest daily average flux of E 

> 2 MeV electrons observed by 

GOES between 1986 and 1999 

occurred on 28th March 1991 

[Fennell et al., 2000]

• Return period is 13.7 years –

results should be similar in 

magnitude to a 1 in 10 year event

• CRRES spectrum of worst cases at 

L* = 6.0 also occurred at this time 

and is similar in magnitude to the 

IREM 1 in 10 year fluxes

Comparison with CRRES Worst Case



• At L* = 4.5, representative of the 

location of the peak fluxes 

encountered in GNSS type 

environments, we find

• 1 in 10 year flux ranges from 

1.4x107 cm-2s-1sr-1MeV-1

at E = 0.69 MeV to                    

5.3x105 cm-2s-1sr-1MeV-1

at E = 2.05 MeV

• 1 in 100 year flux is a factor of 

1.1 to 1.2 times larger than 

the 1 in 10 year flux 

L* = 4.5



• 1 in N year fluxes at equatorial 

MEO are a factor of 3-4 greater 

than those at GEO

Comparison with GEO

L* = 6.0

L* = 4.5



Limiting Flux

• The limiting fluxes at L* = 4.5 are 

up to a factor of 2.3 times larger 

than the 1 in 10 year fluxes



• CRRES spectrum of worst cases 

at L* = 4.5 occurred on 28/29th

March 1991

• CRRES worst case spectrum is 

similar in magnitude to the IREM  

1 in 10 year fluxes

Comparison with CRRES Worst Case



• Results can be used to 

determine the 1 in 10 year 

electron flux as a function of 

energy and L* 

• For each energy the 1 in 10 

year fluxes are roughly 

constant in the region       

4.0 ≤ L* ≤ 5.0 and then 

decrease with increasing L*

1 in 10 Year Fluxes as a function of L* and Energy



1 in 100 Year Fluxes as a function of L* and Energy

• Results can also be used to 

determine the 1 in 100 year 

electron flux as a function of 

energy and L* 

• The 1 in 100 year fluxes are 

typically up to a factor of 2 

times larger than the 1 in 10 

year fluxes



• In the US the National Science and Technology Council called                

for the development of space weather benchmarks in 2015

– including the 1 in 100 year event for the near-Earth radiation environment

• “Space Weather Phase 1 Benchmarks” draft produced                              

in January 2017

– included 1 in 100 year events 
• from LANL [O’Brien et al., 2007] and from GOES [Meredith et al., 2015] 

• from HEO1 and HEO3 [O’Brien et al., 2007] in HEO

• New results can be included in the next draft of the SW Benchmarks

Space Weather Benchmarks



• The 1 in 100 year event levels can be used as space weather 

benchmarks as defined by the SWORM subcommittee of the NSTC

• The benchmarks can be used to

– determine the likely impact of an extreme event 

– improve the resilience of future satellites

– evaluate potential disaster scenarios

– assess the reserves to be set aside to pay claims in the event of a worst case event

• The benchmarks may also be used for 

– comparison with any short time constant event (1 day, 1 hr, or otherwise)

– the purposes of situational awareness and operational risk assessments

– comparison with theoretical maximum fluxes

Summary
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Preliminary Comparison with MagEIS-B Highest Fluxes 

Energy
(MeV)

Date Time
(UT)

Flux
(cm-2s-1sr-1 MeV-1)

0.600 09 May 2016 06:39:00 1.2x107

0.892 09 May 2016 06:39:00 5.9x106

1.541 10 May 2016 18:51:57 4.1x106

2.596 28 April 2017 01:18:29 8.2x102

Data courtesy of Seth Claudepierre

• Instructive to compare results 

with the worst fluxes recorded by 

MagEIS

• Use spin-averaged, background 

corrected, L-binned (OP77Q, 

0.1L bins), B/Beq < 1.1 at L = 

4.45 from MagEIS-B

• 01/04/2013 - 31/12/2017          



GOES E> 2MeV Electrons 

• Eighth largest daily average 

flux of E> 2MeV electrons 

occurred on 11 May 2016

• Extreme value analysis 

suggests that this is a              

1 in 5 year event



INTEGRAL IREM 

• Largest electron fluxes 

during mission at L* = 6.0 

observed on 11 May 2016

• No coverage at L* = 4.5 for 

this event



Energy
(MeV)

Correction 
Factor

0.69 2.85

0.78 2.05

0.88 1.77

0.99 1.64

1.12 1.47

1.27 1.19

1.43 0.96

1.61 0.79

1.82 0.63

2.05 0.58

• Use MagEIS spin-averaged data 

(Release 03, Level 2,        

Version 4.X)

• Period: 19/08/2013 – 07/08/2015

• Conjunction Criteria

• ΔL* < 0.1 in range 3 < L* < 6 

• Δ (B / Beq) <0.1 

and B / Beq ~ 1

• 4 <MLT <8 and 16 <MLT <20

• Δ t < 1 h

Calibration Factors 



Comparison with Other Data Sets 


