Observations directly linking relativistic electron microbursts to whistler mode chorus: Van Allen Probes and FIREBIRD II

Breneman A. et al., (2017), Observations directly linking relativistic electron microbursts to whistler mode chorus: Van Allen Probes and FIREBIRD II, Geophys. Res. Lett., 44, doi:<u>10.1002/2017GL075001</u>.

Aaron Breneman

FIREBIRD II team: Alex Crew, John Sample, Dave Klumpar, Harlan Spence, Bernard Blake, Arlo Johnson, Mike Shumko

Oleksiy Agapitov, Drew Turner, Ondrej Santolik, John Wygant, Cindy Cattell, Scott Thaller, Craig Kletzing

Chorus and microbursts?

- Chorus waves
 - whistler mode plasma wave
 - Outside of plasmasphere, dawn/morning MLT, typically
 - right-hand circularly/elliptically polarized
 - 0.1fce < f < fce</p>
 - Cause scattering loss of e- (e.g. diffuse aurora, microbursts) as well as prompt, localized acceleration of e- to MeV energies.
- Microbursts
 - Impulsive e- injections (few msec) into atmosphere
 - Energies from 10s keV to >MeV
 - May be a significant source of e- loss in storm recovery phase

How and where are uB thought to be created?

- Chorus waves, emitted near equator, have cyclotron resonance with energetic electrons
- Resonance energy increases away from equator

Doppler-shifted cyclotron Resonance condition

$$\boldsymbol{\omega} - \mathbf{k} \cdot \mathbf{V} = n\Omega$$

History and Previous studies

- No direct causal link b/t chorus and relativistic μB has been observed
- Closest previous comparison [Kersten et al., 2011], Δ MLT=1.5 hrs. Data either sparse (short burst waveforms), or low resolution
- Combination of Van Allen Probes and FIREBIRD provides the first real opportunity to observe simultaneous chorus and µB. This is about as good as you can do without specifically designing a mission for this measurement!

Results!

- First observations of simultaneous chorus and µB on same magnetic flux tube. Order of magnitude closer than previous studies
- Single, nonlinear/coherent interaction at 20-30° latitude with chorus creates µB from 200 keV to 1 MeV
- The observed time-averaged µB flux may be a significant source of relativistic e- loss from outer belt

**Flux tube defined as transverse packet size of chorus (100-2000 km) [Santolik et al., 2003, Agapitov et al., 2011; Aryan et al., 2016]

How conjunction is determined

Map position of FIREBIRD from low altitude to magnetic equator using three dayside-applicable Tsyganenko magnetic field models (T89, T01, T05)

Compare to position of Probe A, which is already near equator

Probe A and FIREBIRD **on same magnetic flux tube**, defined as transverse packet size of chorus (100-2000 km) [Santolik et al., 2003, Agapitov et al., 2011; Aryan et al., 2016]

Where/how are these uB created?

- NOT likely Landau resonance occurs at >50 mlat. Rays should be strongly damped by this point
- NOT likely Higher order |n|>1 cyclotron resonance near equator - This requires highly oblique chorus, which we do not observe
- Most likely first order cyclotron resonance which occurs at off-equatorial locations

Global context 1: Conjunction is only a small glimpse into larger precipitation region

- Size of ∆MLT = 1 hr, contains strong chorus (<=1 nT) with similar properties
- Chorus relatively field-aligned $(\theta_{\rm kb} < 30^{\circ})$
- Burst data indicates rising tone chorus
- No waves other than chorus

 these must be causing the uB!

Global context 2: are these uB a significant source of e- loss?

Method: Compare time-averaged uB flux to total flux tube content

Global context 3: are these uB a significant source of e-loss?

- To clear out a single flux tube would take 160 min and 3400 uB
- The time to clear an entire drift shell depends on the MLT extent of the precipitation region. From Van Allen Probes we observe:
 - − Δ MLT = 1 hr → 60 hours
 - (size of local chorus region observed on Probe A)
 - − Δ MLT = 3-5 hr → 10-20 hours
 - (size of chorus region observed on Probe A + Probe B). This is consistent with size of longduration (9 hr) uB region (9-13 MLT, L=5-10) observed by Anderson et al., 2017 using BARREL and AeroCube 6

If the precipitation region is extended and long-lasting (consistent with previous observations) then **YES!**

Global context 4: loss at higher energies?

- A spectral comparison indicates that any loss timescale estimated for 250 keV also applies to energies up to (possibly) 1 MeV
- Loss timescales consistent with past SAMPEX studies by Lorentzen et al, 2001b and O'Brien et al., 2004

Conclusions

- Closest ever simultaneous measurements of chorus and μB show unequivocally that chorus creates μB from sub-relativistic to relativistic energies!
- Scattering likely occurs at 20-30 deg latitude via first order cyclotron resonance
- Observed time-averaged μB flux may represent a major source of eloss in outer belt!