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Analysis of Loss by EMIC waves
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elllustration of the resonant
scattering of electrons by EMIC
waves, that are produced by ring
current protons.

-Left hand polarized EMIC waves
can scatter relativistic electrons
Into the loss cone where they will
be lost due to collisions with
atmospheric particles.



[Loss of Relativistic Electrons in the Radiation Belts
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Dropouts occur when the magnetosphere is compressed and occurs at low energy. The low energy dropouts cannot be
explained by EMIC wave scattering. Radial diffusion simulations show that the outward radial diffusion can
propagate losses down to low L-shells. Additional evidence: [Shprits et al., 2012; Ni et al., 2013; Turner et al., 2012].



Evolution of the Pitch Angle Distribution during
the January 17, 2013 Storm

Unique conditions during the January

m m 1) Pre-storm peak fluxes of relativistic
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° 3 separated.
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[Shprits et al., 2016, Nature Comms.] measure pitch-angle distributions on

REPT.



Comparison of Model and Observations at
Multiple Energies

« At MeV energies model
can reproduce acceleration
and widening of the belts.

« At Multi-MeV the model
reproduces the dropout
and narrowing of the pitch
angle distribution.

[Shprits et al., 2016, Nature Comms.]
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Comparison of Model and Observations at
Multiple Energies
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Three Scenarios of the Evolution of the PSD Profiles

Gradual loss at all L-shells

[Shprits et al., 2017, GRL]
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Deepening Minimums in PSD at Ultra-relativistic Energies

During the January 17, 2013 _ - 0w
Profiles of PSD are monotonic at Han
MeV energies.

Profiles of PSD show deepening
local minimum for all considered
magnetic fields models.

Such evolution of PSD is
consistent with EMIC-induced
scattering of ultra-relativistic
electrons into the loss cone.
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Deepening Minimums in PSD at Ultra-relativistic Energies

During the January 17, 2013 | =700 wevi _ 1 = 3500 MeV/G
Profiles of PSD are monotonic at tomo:
MeV energies.
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Such evolution of PSD is
consistent with EMIC-induced
scattering of ultra-relativistic
electrons into the loss cone.
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Profiles of PSD for Different Values of the First Invariant

At lower energies, profiles are Deeps in PSD are observed at E>~2MeV and deepen with
monotonic. Increasing energy.

1 = 300MeV/G 4 = 500MeV/G 4 =700MeV/G  p=1500MeV/IG  pu=2500MeV/G  p=3500MeV/G

1= 300 MeV/G . ¢ =500 MeV/G

p =700 MeV/G . i = 1500 MeV/G . p = 2500 MeV/G 4 = 3500 MeV/G

PSD [c*/em?/MeV3]

Monotonic _ 4 Monotonic

...

°
,..
[=]

~ Profiles _ Profiles

E = 1.32 MeV

-
N
"
Q
\
A
[

N
u o N

=

o
I

Energy [MeV]
o W kB U0 9w
Energy [MeV]
~
Energy [MeV]
[V I I VIR B
Energy [MeV]

w
N W
Energy [MeV]

N W A U & N

2
wn
=]

w
w
w
wn
S

[Shprits et al., 2017, GRL]



Dynamic Evolution of Deeps in PSD
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Evidence for EMIC Scattering

Deeps in PSD correlate with Wave Observations and narrowing of pitch angle distributions

The presence of the EMIC waves

The formation of pronounced local minimums

A Normalized (90°) pitch angle, L*=4.5 = 0.1, REPT, E = 4.5 0.5 MeV
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Simulations of the “Storage Ring” without EMIC
waves

L e e
i QTR . |

ittt ity M AR LA

Simulations without EMIC wave
scattering can reproduce 2MeV

9% TTTTTTAATATA, "Degll  dynamics but fail to reproduce the 3

Observations 4MeV

LG O e PO R L PSSR Kt L Oy R A zone structure and the narrow ring

R ) formed at higher energies.

Model 4MeV

bl Radial diffusion can only smoth
LR LI LN T I LR X U] RTTY ORI O S M A gradients and Can not produce Sharp
dropouts and very narrow strucutres.

MM/DD of year 2012

[Shprits et al., 2013, Nature Physics]



GZMV

; WW |||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUI HWWWWW’

: nnm.'.’i’.l'.’ﬂwmmmmmmm Wﬁ

Simulations of the “Storage Ring”
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Simulations without EMIC waves
can not reproduce such narrow
remnant belts.
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PSD Profiles During September 2012 Storm
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Theoretic Estimates of the Minimum
Resonance Energies
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) anisotropy, density and various
combinations of ion
composition calculations
Including hot plasma effects
result in resonance energies
above ~2 MeV .
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[Cao*, Shprits*, Ni and Zhelavskaya, 2017, Scientific Reports]



Theoretic Estimates of the Minimum
Resonance Energies
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Summary

While EMIC waves do not substantially change the dynamics of the relativistic electrons,
at ultra-relativistic energies, scattering by EMIC waves start to play a crucial role.

Knife-edge dropout at ultra-relativistic energies, pitch angle distributions with bite-outs
at small pitch angles and clear differences between relativistic and ultra-relativistic
dynamics all show that EMIC waves play a dominant role in scattering ultra-relativistic
electrons.

Scattering by EMIC waves explains the formation of a narrow belt that lasted for
approximately 1 month in September 2012.

Deepening minimums in PSD provide additional evidence for the loss at ultra-relativistic
energies and regions where EMIC-induced loss depletes ultra-relativistic electrons.

Estimates of MRE that account for realistic plasma density, composition, anisotropy, and
density show that resonances below 2 MeV are unlikely.

Ultra-relativistic electrons form a new population of the belts that is driven by different
physical processes [Shprits et al., 2013, Nature Physics].



Difference in Behavior of Ultra-relativistic and
Relativistic Electron Fluxes
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« Simulations with EMIC wave scattering can
reproduce unusual behavior of the radiation
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« Simulations with EMIC scattering reproduces
3 zone structure at 4MeV and a very narrow
remnant belt at 6.2 MeV.

 Simulations without EMIC waves can not

! J 1 reproduce such narrow remnant belts.

[Shprits et al., 2013, Nature Physics]




Analysis of PSD Profiles Presented by
Mann et al. (2016)

[Mann et al., 2016, Nature Physics]
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Simulations of Mann et al., 2012
show an order of magnitude
higher fluxes than observed.

The remnant belt Is at least twice
as wide as that of observed.

The boundary condition of zero
PSD at 5.5. is unrealistic.
Simulations are only presented
for a narrow range of energies.



Simulations of Mann et al. (2018)
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Comparison of the Evolutions of the Modeled and
Observed Radial Profiles of Fluxes
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Evolution of the Pitch Angle Distribution

Energy =1.02 MeV, L*=3.9 Energy = 4.20 MeV, L*=3.9
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Simulations with and without EMIC waves

EMIC, Energy=4.2 MeV, L=3.9 Energy = 4.20 MeV, L* = 3.9
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Difference in Behavior of Ultra-relativistic and
Relativistic Electron Fluxes
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Simulations with EMIC wave scattering can
reproduce unusual behavior of the radiation
belts.

Simulations with EMIC scattering reproduces
3 zone structure at 4MeV and a very narrow
remnant belt at 6.2 MeV.

Simulations without EMIC waves can not
reproduce such narrow remnant belts.



Analysis of PSD Profiles Presented by
Mann et al. (2016)

Narrow remnant belt

[Mann et al., 2016, Nature Physics]



Simulations of loss to MP and 3 diffusive processes

ok
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MM/DD of year 2012

[Shprits et al., 2013 Nature Physics]

*Magnetopause loss that can explain
for the loss of particles at relativistic
energies cannot explain losses at
ultra-relativistic energies.

«Additional loss process is required
to produce a narrow ring of
radiation.
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