Modeling the Magnetopause Shadowing Loss during the June 2015 Dropout Event

Weichao Tu¹, Zheng Xiang^{1,2}, and S.K. Morley³

¹West Virginia University ²Wuhan University, China ³Los Alamos National Laboratory

Radiation Belt Electron Dropouts

- Where do the electrons go during the dropouts?
 - **#1. Precipitation loss**
 - **#2. Magnetopause shadowing**
 - Combined with outward radial diffusion

June 2015 Dropout Event: Flux and Solar Wind

From Flux to Phase Space Density

• Large gaps in electron PSD at given μ and K, due to:

From Flux to Phase Space Density

- Large gaps in electron PSD at given µ and K, due to:
 - Van Allen Probes on open drift shells

From Flux to Phase Space Density

- Large gaps in electron PSD at given μ and K, due to:
 - Van Allen Probes on open drift shells
 - Limited pitch angle coverage at certain parts of the orbit

Last Closed Drift Shell (LCDS)

LCDS traced in TS04 model
 Strong K dependence

Flux pitch angle distribution (1.8 MeV, along RBSP-A orbit)

Modeling Magnetopause Shadowing Loss

Radial diffusion model:

$$\frac{\partial f}{\partial t} = L^2 \frac{\partial}{\partial L} \left(\frac{D_{LL}}{L^2} \frac{\partial f}{\partial L} \right) - \frac{f}{\tau}$$

- Event-specific LCDS in TS04
- Electron lifetime τ = drift period outside LCDS
- Neumann boundary condition at L*=11
- Start with empirical $D_{LL}(Kp, L)$ [Brautigam and Albert, 2000]

D_{LL}(B&A) vs. D_{LL}(Liu+Ali)

- New D_{LL}^E (μ, Kp, L) from [Liu et al., 2016] based on THEMIS data
- New D_{LL}^B (Kp, L) from [Ali et al., 2016] based on Van Allen Probes data
- More realistic $D_{LL}^{Total}(\mu, Kp, L) = D_{LL}^{E}(\mu, Kp, L) + D_{LL}^{B}(Kp, L)$

Model Results with D_{LL}(Liu+Ali)

EMIC Wave Observations

Van Allen Probe A

H+ band EMIC
waves were
detected at
2.5<L*<3.5 by
RBSP-A during
pass 7.

Conclusions

- A radial diffusion model with event-specific LCDS and new D_{LL} was developed to simulate the remarkable RB dropout during the intensely CME-shock driven June 2015 storm.
- The model well captured:
 - The fast magnetopause shadowing loss at high L* regions after both shocks;
 - The initial adiabatic loss of the storage ring at low L* regions after the second strong shock;
 - The event-specific and K-dependent LCDS and new D_{LL} are critical to reproduce the detailed dropout features (timing, location, PAD).
- Future work is needed to model the further loss of storage ring after the shock possibly by EMIC waves.

Who ate the RB donut?

Model Results with D_{LL}(Liu+Ali)

Flux Observed by 6 LANL-GEO Satellites

Event 1: PA Distribution

 \geq Electron flux with 90° equatorial pitch angle were not observed.

Event 1: PSD vs. L* Profile

Significant decrease in PSD over a broad range of μ and L* (L*>2.6): dominant mechanism is magnetopause shadowing.