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Assessing EPP through its signatures
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❖ A full assessment of EPP 
requires: 
❖ Flux 
❖ Spectra 
❖ Time scales 
❖ Spatial scales 

❖ Not to mention: 

❖ Connection between 
observables and these 
physical parameters
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Spatial Scales

❖ FIREBIRD: Crew et al [2016]: microburst scale sizes down to 11 km (120 km eq.) 

❖ AC6: Blake and O’Brien [2016] 

❖ BARREL: Clilverd et al [2017]: 1.5–3.5 h MLT 

❖ BARREL + AC6: Anderson et al [2017]: microburst region spanning 4h MLT and L = 5—10 

❖ POES: Shekhar et al [2017]: 31,000 events: dL = 0.5L (morning/dusk)  
or 1—2.5L (nightside), dMLT ~ 3h for both 

❖ Also don’t forget SAMPEX, e.g. Blake et al [1998]: 2-3 degrees in latitude near outer boundary 

❖ What about regular, continuous observations and monitoring of 
precipitation?
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Outline

1. Forward modeling overview 

2. Subionospheric VLF remote sensing of precipitation 

1. single-path assessment 

2. 2D inversion 

3. X-ray observation of precipitation
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EPP Simulations: Input Electron Distributions
❖ We assume a mean input integrated flux of 105 electrons/cm2/sec 

❖ estimated from years of DEMETER observations published by Whittaker et al [2013] —> 

❖ Energy distributions given by exponential or power-law: 

❖ f(E) = f0 e−E/E0 (exponential, E0 ∈ [100 400] keV) 

❖ f(E) = f0 E−α (power law, α ∈ [2 4]) 

❖ Pitch-angle distributions (PADs) can be arbitrary: sine (at LEO), sine (at equator), omnidirectional, isotropic, etc. 

❖ Work shown in this talk uses isotropic PAD (“omni at LEO” below)
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Energy Deposition and Electron density

❖ Given an input energy / pitch angle distribution, Monte Carlo 
modeling is used to determine the energy deposition profiles 

❖ Then, we use chemistry modeling to determine electron 
density disturbance 

❖ Below uses 5-species GPI chemistry model [Glukhov et al, 
1992; Lehtinen and Inan, 2009]
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❖ Below uses 5-species GPI chemistry model [Glukhov et al, 
1992; Lehtinen and Inan, 2009]

6

Electron Density (1/cm3)
10-5 100 105

Nighttime
Flux = 106 el/cm2/sec

Electron Density (1/cm3)
10-5 100 105

Nighttime
Flux = 105 el/cm2/sec

Nighttime

Electron Density (1/cm3)
10-5 100 105

Al
tit

ud
e 

(k
m

)

20

40

60

80

100

120
Nighttime
Flux = 104 el/cm2/sec

10-5 100 105

Daytime
Flux = 106 el/cm2/sec

10-5 100 105

e0 = 100 keV
150 keV
200 keV
250 keV
300 keV

Daytime
Flux = 105 el/cm2/sec

Background ionosphere

10-5 100 105

Al
tit

ud
e 

(k
m

)

20

40

60

80

100

120
Daytime
Flux = 104 el/cm2/sec

Energy deposition (eV/m3/sec)
106 108 1010

Al
tit

ud
e 

(k
m

)

40

60

80

100

120

140
βe = 100 keV
150 keV
200 keV
250 keV
300 keV

We need to measure 
the D-region 

density profile in 
order to infer the 

preciptating energy 
flux / spectrum



University of Colorado
Boulder

Modeling VLF signatures of Precipitation
❖ Electron density perturbations are used as 

input to 2D VLF Propagation models which 
simulate expected amplitude and phase 
along the ground 

❖ Finite-Difference Time-Domain (FDTD) 
model [Marshall, 2012, JGR] 

❖ LWPC: US Navy mode solver 

❖ Model with and without precipitation; 
subtract to determine perturbation
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VLF perturbations vs. Flux parameters
❖ precipitation patch is 200 km (gaussian radius), centered at 1200 km 

❖ VLF perturbations at 24 kHz, from NAA (Maine) towards somewhere in Canada
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❖ precipitation patch is 200 km (gaussian radius), centered at 1200 km 

❖ VLF perturbations at 24 kHz, from NAA (Maine) towards somewhere in Canada
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VLF perturbations vs. Flux parameters
❖ precipitation patch is 200 km (gaussian radius), centered at 1200 km 

❖ VLF perturbations at 24 kHz, from NAA (Maine) towards somewhere in Canada
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❖ We repeat this process for daytime, nighttime, different perturbation sizes, etc. 

❖ No clear, definitive correlation between precipitation signatures and observed VLF response
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❖ We repeat this process for daytime, nighttime, different perturbation sizes, etc. 

❖ No clear, definitive correlation between precipitation signatures and observed VLF response
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❖ precipitation patch is 200 km (gaussian radius), centered at 1200 km 

❖ VLF perturbations at 24 kHz, from NAA (Maine) towards somewhere in Canada
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Better: Direct 2D inversion
❖ Segue: the next few slides are not about precipitation. 

❖ We are trying to estimate the state of the ionosphere, over a large spatial region, using VLF 
amplitude and phase. 

9

❖ Using a set of 
overlapping 
transmitter-receiver 
paths, can we estimate 
the state of the 
ionosphere in 2D? 

❖ Idea goes back to Inan et 
al [1990] and others 
since then, but never 
applied full 2D inversion 
problem

Inan, U.S., Knifsend, F.A. and Oh, J., 1990. Subionospheric 
VLF “imaging” of lightning-induced electron precipitation 
from the magnetosphere. Journal of Geophysical Research: 
Space Physics, 95(A10), pp.17217-17231.
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ensemble Kalman Filter (EnKF)
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EnKF Implementation 

❖ Ensemble consists of ~100 ionospheres 
sampled around the “best guess” 
ionosphere 

❖ LWPC is run for every transmitter/receiver 
path through each ensemble ionosphere 
(~3000 runs/iteration) 

❖ EnKF can iterate continuously as 
measurements are received. Only ~10 
serial iterations required for convergence

h’ estimation error for three different 
ionosphere grid cells. The initial ensemble 
considered a large range of possible true 
ionospheres, but quickly converged to 
within half a kilometer of the truth.

What is an EnKF? 

❖ A statistical method to improve the 
ionosphere estimate with VLF receiver 
measurements 

How does it work? 

❖ Compares LWPC-simulated (model) and real 
receiver measurements 

❖ Updates ionosphere estimate by optimally 
weighting model and measurements based 
on uncertainty in each 

❖ Model uncertainty is characterized by the 
sample covariance of an ensemble of 
estimated ionospheres
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EnKF applied to D-region estimation

❖ Ionosphere is approximated by ne = 1.43 × 107 e-0.15h e-(β-0.15)(h-h’)
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Sample h’ Ensemble Errors

• Each gray line is from 1 
ensemble member ionosphere

• Black line is ensemble mean

• Initial ensemble distribution is 
+/- 5 km

• Estimate converges in 3-4 
iterations (measurements)
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D-region estimation error

❖ h’ and β estimated over entire US with about 0.5 km (h’) / 0.05 km-1 (β) accuracy 

❖ Model includes realistic receiver noise 

❖ Clear regions where model does poorly, due to poor path coverage

13
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VLF Next Steps…

❖ We’ve determined the 2D D-region 
ionosphere in terms of h’ and beta. 
Next we need to: 

❖ Convert that to precipitation fluxes in 
each grid cell 

❖ Assess precipitation regions 

❖ Move the whole problem to higher 
latitudes

14
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Outline
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1. Forward-modeling EPP in 
the atmosphere: Monte 
Carlo model 

2. forward modeling VLF 
signatures 

3. VLF inversion: enKF 

4. forward modeling X-ray 
signatures 

5. X-ray inversion: curve 
fitting 

6. Ongoing / Future work



University of Colorado
Boulder

X-ray inversion

❖ How do we determine the precipitating electron flux and energy distribution 
from X-ray observations?  

❖ First attempts by Clilverd et al [2017]:  
basic “best fit” approach

16

❖ Our approach (so far):  

❖ Build a set of impulse responses to 
monoenergetic beams at range of 
energies 

❖ Fit data with linear combination of the 
inpulse responses
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Curve fitting to simulated X-ray distribution

❖ Successively fit to 
highest-energy 
beam; subtract; 
repeat 

❖ Requires assumed 
balloon altitude 

❖ Assumes an 
atmospheric density 
profile 

❖ Instrument response 
not yet accounted for

17
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Curve fitting results

❖ Fit to X-ray distribution (left) 
is consistent with input 

❖ Extracted electron energy 
distribution is quite good! 

❖ Simulated through 
identical atmosphere; 
need to test with 
uncertain atmosphere 

❖ But, due to low particle 
fluxes at high energies, the 
fitting isn’t always so 
smooth…

18
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Curve fitting: Energy flux

❖ … but, in all cases the energy flux estimate is quite good, and the resulting atmospheric 
deposition profile is very good. 

❖ Ongoing work: refining the method; extending to 2 MeV; applying to BARREL data

19
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Energetic Electron
Precipitation

Atmospheric 
X-ray emissions

Space-based 
X-ray Imaging
(AEPEX)

Space-based X-ray measurements
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Estimated EPP distribution based on observations of X-
rays at LEO in 50—300 keV energy range



University of Colorado
Boulder

Summary

❖ VLF amplitude and phase on single transmitter-receiver path is poorly correlated 
with precipitation flux, spectrum, spatial size… 

❖ VLF “tomography” has promise for measuring the D-region ionosphere over 
large regions, and in turn inferring the precipitation signatures 

❖ Developed a model of X-ray signature inversion to EPP spectrum 

❖ Future X-ray observations from above will also address spatial scales

21


