

Validating very long-term simulations with the BAS Radiation Belt Model using GIOVE-B data

Sarah Glauert Richard Horne Nigel Meredith

sagl@bas.ac.uk

British Antarctic Survey, Cambridge, UK

AGU Chapman Conference

Cascais, Portugal

March 2018

Outline

- Motivation
- Background on the model
- Boundary conditions
- Results
- Comparison with data
- Conclusions

Context

EU FP7 project SPACESTORM

- April 2014 March 2017
- Aim: To model severe space weather events and mitigate their effects on satellites
- Reconstruct the high-energy electron radiation environment inside GEO for 30 years

Motivation

- Understanding the MEO environment is becoming increasingly important
 - -GPS, Galileo

 - -Electric orbit raising
- Modern satellites expected to have a lifetime of about 20 years
- No data set at MEO covers this sort of time period
- A 30 year reconstruction would provide a resource for designers, operators and insurers

BAS Radiation Belt Model

- Diffusion equation for the drift averaged phase-space density —pitch-angle (α), Energy (E), L* (L)
- Includes:
 - -Wave-particle interactions
 - -Radial transport
 - -Loss to the atmosphere and magnetopause
- Waves:
 - —Upper and lower band chorus
 - -Plasmaspheric hiss and lightning-generated whistlers
 - -EMIC waves

$$\frac{\partial f}{\partial t} = \frac{1}{g(\alpha)} \frac{\partial}{\partial \alpha} \Big|_{E,L} g(\alpha) \left(D_{\alpha \alpha} \frac{\partial f}{\partial \alpha} \Big|_{E,L} + D_{\alpha E} \frac{\partial f}{\partial E} \Big|_{\alpha,L} \right) + \frac{1}{A(E)} \frac{\partial}{\partial E} \Big|_{\alpha,L} A(E) \left(D_{EE} \frac{\partial f}{\partial E} \Big|_{\alpha,L} + D_{\alpha E} \frac{\partial f}{\partial \alpha} \Big|_{E,L} \right) + L^2 \frac{\partial}{\partial L} \Big|_{\mu,J} \left(\frac{1}{L^2} D_{LL} \frac{\partial f}{\partial L} \Big|_{\mu,J} \right) - \frac{f}{\tau} g(\alpha) = \sin 2\alpha \left(1.3802 - 0.3198 \left(\sin \alpha + \sin \alpha^{1/2} \right) \right) A(E) = (E + E_0) \left(E(E + 2E_0) \right)^{1/2}$$

Glauert et al. [2014 a, b] *Horne et al.* [2013] *Meredith et al.* [2014] *Kersten et al.* [2014]

Model boundaries

- Model includes radial diffusion —Energy range varies with L*
- 6 boundaries:

 $-\alpha = 0^{\circ}, 90^{\circ} \quad \partial f/\partial \alpha = 0$ $-E_{max}(L^{*}) = 0 \quad f = 0$ $-E_{min} = 100 \text{ keV at } L_{max}$ $-L_{min} = 2 \quad \text{Statistical boundary condition from CRRES data [Glauert et al., 2014b]}$ $-L_{max} = 6.1$

Outer L* boundary

Need a data set that covers 30 years
 —GOES > 2MeV electron flux (EPS, 5 minute resolution)

Image: SWPC

GOES provides:	Mo
Integral flux	Dri
At GEO - varying L*	Fixe
>2 MeV flux only	Ful

Aodel requires: Orift-averaged differential flux ixed L* ull spectrum from 100 keV

• Need to

- 1. Map to fixed L* and remove diurnal variation
- 2. Approximate differential energy spectrum from one integral flux measurement

Mapping to fixed L*

Statistical Asynchronous Regression (SAR) [O'Brien at al,2001]

- Finds a function that maps the flux measurement at any MLT, to the flux that would be measured by the same instrument at a fixed MLT
- Removes the diurnal variation and maps to a fixed L*

Apply SAR to GOES >2MeV data

- Average the flux into 2 hour MLT bins for 3 levels of Kp $0 \le Kp < 2, 2 \le Kp < 4, 4 \le Kp$
- Calculate Kp dependent mappings
 - -for both dawn and dusk
- Map flux to dawn and dusk and then average
- Separate mappings for each GOES spacecraft

Example: GOES 11 1 Jan. to 1 April 2008

Approximating the spectrum

- Have to derive the differential flux spectrum from >2MeV flux
- Need to know what the spectra look like at GEO
 - -GOES 15 MAGED
 - 150 keV, 275 keV and 475keV differential flux
 Difference >800 keV and >2 MeV flux
 - Bin flux by level of >2MeV flux
 Bins: 8, 30, 500, 10000 cm⁻² s⁻¹ sr⁻¹ +/- 10%
 Fit kappa distribution to PSD in each bin
 Get differential flux spectra
 Calculate integral spectra

Spectra at GEO

- Shape of spectra changes as >2MeV flux increases
 - -'High energy tail' develops
- Differential spectra from >2MeV flux
 - —Find spectra that lie above and below the >2MeV flux
 - Find weighting for these spectra so>2MeV flux matches
 - —Apply same weights to differential spectra
 - => Spectrum on boundary

Fitting spectra

April - July 2011

L_{max} and E_{min} boundary conditions

Outer radial boundary:

- Apply SAR to get drift average >2MeV flux at fixed L^{*}
- Use spectra to get all energies
- Move boundary adiabatically to L*=6.1

Minimum energy boundary:

- Average psd as a function of L* —From CRRES for μ= 100 MeV/G
- Scale this profile to match outer boundary

GOES satellites

Usually more than one GOES spacecraft providing data

- Prefer to use GOES West
- Nearer the magnetic equator

GOES	Start Date
6	01-01-1986
7	06-03-1987
9	01-04-1996
10	28-07-1998
11	01-07-2006
15	01-01-2011

1986 - 2016

- Short term variability
- Long term variability
 - -Most intense in declining phase 1993-1994, 2003-2005
 - —Quiet start to new cycle 1998, 2009
- Electron desert 2009

2003 - 2007

• Declining phase of solar cycle

• Includes

- —Halloween storms
- -GOES >2MeV maximum flux [*Meredith et al.,* 2015]
- ---POES >300keV maximum flux at L*=4.5 [*Meredith et al.,* 2016]
- -Galaxy 10 R anomaly
- -Intelsat 804 anomaly

Spectra

- L* = 4.6
- Harder spectrum during declining phase
- Very soft spectrum during the 'electron desert'

Comparison to extreme fluxes

Rad-Sa

Meredith et al., SW, 2018

2 August 2004

GIOVE-B spacecraft

 Galileo In-Orbit Validation Element-B (GIOVE-B) — Inclination ~56°, period ~14 hours, altitude 23,200 km — ~4.2 < L* < ~8.8 (Olson-Pfitzer) — ~4 years of data (May 2008 – July 2012)

Image: ESA

- Standard Radiation Environment Monitor (SREM), [Evans et al., 2008]
 - -15 channels:
 - TC1 channel E >2 MeV
 - TC3 channel E >800 keV.

 Use response functions to convert model output to SREM count rates —Giove-B response functions not available - use Rosetta

Comparison with GIOVE-B data

- L* = 4.6, 5.1 and 5.6
- TC1 ~ > 2MeV
- TC3 ~ >800 keV

Model vs data

Correlation coefficients			
L*	TC1	TC3	
4.6	0.85	0.82	
5.1	0.86	0.79	
5.6	0.85	0.74	

Reasonably good correlation?

Metrics

Median symmetric accuracy *Morley et al.,* 2018

L*	Mean abs. error (counts)	Median error (counts)	% within a factor of 4	50% of errors less than a factor of	Skill Score vs average
4.6	3279.	557.	70.8	2.61	0.69
5.1	949.	144.	80.0	2.1	0.73
5.6	291.	41.	75.9	2.1	0.59

L*	Mean abs. error (counts)	Median error (counts)	% within a factor of 4	50% of errors less than a factor of	Skill Score vs average
4.6	1846.	7509.	64.0	2.54	0.65
5.1	1005.	3929.	80.0	1.96	0.59
5.6	4764.	2016.	76.2	2.15	0.37

Conclusions

- Have a 30 year long simulation of the radiation belts
- Reasonable agreement with data
- Applications
 - Look at environment when anomalies occurred
 - —Worst case fluxes
 - 'Fly through' for typical conditions along an orbit

Thank you

Acknowledgements

- The Spacestorm project was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 606716
- This research was funded in part by the Natural Environment Research Council (NERC) Highlight Topic Grant #NE/P01738X/1 (Rad-Sat).

Skill Score

$$SS = 1 - \frac{\sum_{1}^{N} (X_{i} - Y_{i})^{2}}{\sum_{1}^{N} (X_{i} - \overline{X})^{2}}$$

 X_i = data values Y_i = model results X = average data N = number of points

• - ∞ < SS ≤ 1

-SS = 1 implies a perfect model

- -SS = 0 implies average from model equals average from data
- -SS < 0 you should use the average value instead of your model
- We compare log (fluxes) [Balakin et al., 2016]

Next steps

- Recalculate using >800 keV flux on outer boundary (from 1994)
- Use POES data for low energy boundary (from 1998)
- Compare with other data sets e.g. VAP
- Compare with AE8/AE9

