Electron distributions in kinetic scale field line resonances: A comparison of simulations with Cluster and Van Allen Probes observations

P.A. Damiano¹, C.C. Chaston², A.J. Hull² and J.R. Johnson³ ¹Geophysical Institute, University of Alaska Fairbanks ³Space Sciences Laboratory/UC Berkeley ⁴Andrews University

Chapman conference on Particle Dynamics in the Earth's Radiation Belts, Cascais, Portugal, 4-9 March, 2018

Courtesy C. Chaston

Alfvénic Interactions

Courtesy C. Chaston

How Common and Where ?

- These waves are always present in the inner magnetosphere during geomagnetic storms with peak amplitudes in and around storm-time injection fronts .
- These waves are observed at all local times but primarily from 18 to 6 MLT close to apogee and extend inside L=4.

Courtesy C. Chaston

Relative spacecraft positions

Observations not conjunctive: Qualitative comparison.

Van Allen Probes observations

Cluster observations

7

Hybrid Gyrofluid-Kinetic-Electron (GKE) model

(Damiano et al., 2007; Damiano et al., 2015, 2016; Cheng and Johnson, 1999) Fluid equations (not solved as shown) Guiding center equations

Momentum equation

 $\rho \frac{\partial \tilde{\mathbf{V}}_{\perp}}{\partial t} = (\mathbf{B}_0 \cdot \nabla) \mathbf{B}_{\perp}$ where $\tilde{\mathbf{V}}_{\perp} = (1 - 1.25 \rho_i^2 \nabla_{\perp}^2) \mathbf{V}_{\perp}$ Faraday's Law $\frac{\partial \mathbf{B}_{\perp}}{\partial t} = -\nabla \times \mathbf{E}$ Perpendicular Ohm's law

$$\mathbf{E}_{\perp} = \mathbf{B_0} \times (\mathbf{1} - \rho_{\mathbf{i}}^{\mathbf{2}} \nabla_{\perp}^{\mathbf{2}}) \tilde{\mathbf{V}}_{\perp}$$

Parallel Ohm's law

Moments of electron distribution function calculated via PIC techniques

 $m_e \frac{av_{||}}{dt} = -eE_{||} - (\mu_m \nabla_{||} B_o)$ $h_{\parallel} \frac{dx_{\parallel}}{dt} = v_{\parallel}$

KFLR – Initialization (n=5 mode)

 $(n=n_e=1 \text{ cm}^{-3}, T_e=1 \text{ keV}, T_i=10 \text{ keV}, Period=5.5 \text{ s})$

Previous studies: **Two fluid -** *Streltsov et al.*, (1998). **Vlasov** - *Rankin et al*,. (2007). **Two fluid/test particle** - *Chaston et al.*, (2016, 2017, 2018).

Simulation grid and relative spacecraft positions

Let us consider features along L=6 field line in the northern hemisphere – field line of maximum j_{\parallel} (dotted line).

Parallel current and distribution function evolution (n=5)

Wave trapped electrons

(O'Neal, 1965; KAWs: Wygant, 2002; Watt and Rankin, 2009; Damiano et al., 2015, 2016, Artemyev et al., 2015)

Precipitating electrons

KFLRs facilitate soft electron precipitation that can drive outflow.

Time averaging of simulation data

Best temporal resolution of Van Allen probes for electrons and ions is \sim 11 seconds (1 spin period).

Good qualitative agreement for choice of representative parameters

Summary

- Electron distributions in kinetic field line resonances exhibit highly field-aligned cores due to electron trapping.
- Loss cone features result from the precipitation of higher energy un-trapped electrons.
 - This soft electron precipitation can facilitate outflow.
- These electron distribution features are evident in both simulations and observations.
- This qualitative comparison is limited by the presence of cold electron population, the unknown harmonic composition of fields and the temporal aliasing of the Van Allen probes electron measurements.

Damiano et al. Electron distributions in kinetic scale field line resonances: A comparison of simulations and observations (2018, submitted).

Parallel elongation defined by nonlinear trapping width (Wygant, 2002):

$$v_{tr} = \sqrt{rac{2e\phi}{m_e}}$$

In the context of reconnection potentials - e.g. *Le et al.*, 2009.

Active injection experiments in ionosphere (Porcupine) - *Haeusler et al., 1986; Bohm et al., 1992.*

(Damiano et al., JGR, 2016)

(First simulated in auroral context by Watt and Rankin 2009)

Initial trapping of electrons

