

THE PARAMETERIZATION OF WAVE-PARTICLE INTERACTIONS IN THE OUTER RADIATION BELT

C. E. J. Watt, S. Bentley, R. Thompson, P. Williams, University of Reading
I. J. Rae, C. Forsyth, C. Anekallu, MSSL/UCL
H. Allison, N. P. Meredith, S. Glauert, R. B. Horne, British Antarctic Survey
K. R. Murphy, University of Maryland/NASA Goddard

This research was funded in part by the Natural Environment Research Council (NERC) Highlight Topic Grant #NE/P01738X/1 (Rad-Sat).

SUMMARY

- Variability of wave-particle interactions
- Uncertainty
- Parameterisations
- An example
- Future directions

VARIABILITY OF WAVE-PARTICLE INTERACTIONS

- ULF waves variability relative to parameterizations
 - Jaynes, Monday: "Diffusion rates are highly event-specific"
 - Olifer, Thursday: Sometimes D_{LL} inferred directly from event-specific observations is much larger than our current parameterization, sometimes much less.
- EMIC waves evaluating effectiveness of wpi
 - Millan, Wednesday: Presence of EMIC waves not always sufficient condition for precipitation – perhaps local plasma conditions are controlling interaction
- Whistler-mode waves evaluating effectiveness of wpi
 - Blum, Wednesday: nature of wpi depends on local composition, wpe/wce ratio as well as wave properties

TWO MAIN POINTS

Natural variability in system

 Construction of wave-particle interaction parameterizations

IS SYSTEM DETERMINISTIC?

- Natural system Chaotic
- Uncertainty might not be due to ignorance, but due to stochastic nature of processes.
- We suggest that the necessary diffusion treatment of Outer Radiation Belt dynamics has an "irreducible uncertainty." [Palmer and Williams, Proc. Roy. Soc. A., 2008]

SOURCES OF UNCERTAINTY

- Parameterization
- Initial conditions
- Boundary conditions real and energy space
- Numerical methods
- Underlying physical equations (!!)

INCLUDING VARIANCE IN PARAMETERIZATION

- Numerical Weather Prediction and Climate Modelling now embracing stochastic parameterization [e.g. Berner et al., BAMS, 2017]
 - Need to know underlying distribution of parameters
 - Numerical schemes need stochastic nature built in
 - Can run "ensembles"
 - Can fold in underlying distribution if wellbehaved (e.g. Gaussian or log-normal)

time

Berner, J., et al. (2017), Stochastic parameterization: Toward a new view of weather and climate models, Bull. Am. Meteorol. Soc., **98**, 565–588, doi:<u>10.1175/BAMS-D-15-00268.1</u>.

PARAMETERIZATIONS

- Usually based upon geomagnetic activity and location
- How do we assess how good they are?

A GOOD PARAMETERIZATION

- A "good" parameterization is one which limits the variance σ in the quantity you are trying to predict, X
- σ should be small compared to the change in mean/median value with P

IS THAT THE CASE FOR WAVE PARAMETERIZATIONS?

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

11

CONSTRUCTION OF PARAMETERIZATIONS - 1

• Let's get specific:

CONSTRUCTION OF PARAMETERIZATIONS - 2

- Inputs usually modelled independently
 - Time-average of observations obtained over many years
 - Semi-empirical models for B, n
- What happens if you construct $D_{\alpha\alpha}$ from individual samples of magnetospheric parameters, then look at distribution/statistical description?

PILOT STUDY

- CRRES data
- Diffusion due to hiss for 2.5 < L < 3.5
- Any MLT
- 187 points
- CRRES collects simultaneous
 - f_{pe}/f_{ce}
 - Wave intensity

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

PLASMA/ GYRO-FREQUENCY

LIMITLESS POTENTIAL | LIM

WAVE AMPLITUDE

LIMITLESS POTENTIAL

PADIE DIFFUSION COEFFICIENTS

- Note, we have insufficient information from CRRES to study effects of spectral shape etc
- Two inputs:
 - plasma:gyro frequency ratio
 - Wave intensity
- Coefficient of variation:
 - Wave amplitude: 0.98
 - plasma:gyrofrequncy: 0.25
 - Diffusion coefficient: 2.96

CONCLUSIONS AND FUTURE WORK

- Our parameterizations of diffusion in Outer Radiation Belt due to all wave types could be improved (see S. Bentley – this session)
 - parameterization of D_{ii}, not inputs to D_{ii}
 - D_{ij} likely to have larger variance than variance due to wave amplitudes alone
 - Parameterization with activity level currently leads to very large variance compared to difference in median values
 - Seek new parameterizations that minimize the variance in the diffusion coefficient
- Diffusion models with stochastic parameterizations