THE PARAMETERIZATION OF WAVE-PARTICLE INTERACTIONS IN THE OUTER RADIATION BELT

C. E. J. Watt, S. Bentley, R. Thompson, P. Williams, University of Reading
I. J. Rae, C. Forsyth, C. Anekallu, MSSL/UCL
H. Allison, N. P. Meredith, S. Glauert, R. B. Horne, British Antarctic Survey
K. R. Murphy, University of Maryland/NASA Goddard

This research was funded in part by the Natural Environment Research Council (NERC) Highlight Topic Grant #NE/P01738X/1 (Rad-Sat).
SUMMARY

• Variability of wave-particle interactions
• Uncertainty
• Parameterisations
• An example
• Future directions
VARIABILITY OF WAVE-PARTICLE INTERACTIONS

- ULF waves - variability relative to parameterizations
 - Jaynes, Monday: “Diffusion rates are highly event-specific”
 - Olifer, Thursday: Sometimes D_{LL} inferred directly from event-specific observations is much larger than our current parameterization, sometimes much less.

- EMIC waves - evaluating effectiveness of wpi
 - Millan, Wednesday: Presence of EMIC waves not always sufficient condition for precipitation – perhaps local plasma conditions are controlling interaction

- Whistler-mode waves – evaluating effectiveness of wpi
 - Blum, Wednesday: nature of wpi depends on local composition, wpe/wce ratio as well as wave properties
TWO MAIN POINTS

• Natural variability in system

• Construction of wave-particle interaction parameterizations
IS SYSTEM DETERMINISTIC?

• Natural system - Chaotic

• Uncertainty might not be due to ignorance, but due to stochastic nature of processes.

• We suggest that the necessary diffusion treatment of Outer Radiation Belt dynamics has an “irreducible uncertainty.” [Palmer and Williams, Proc. Roy. Soc. A., 2008]
SOURCES OF UNCERTAINTY

• Parameterization
• Initial conditions
• Boundary conditions – real and energy space
• Numerical methods
• Underlying physical equations (!!)
INCLUDING VARIANCE IN PARAMETERIZATION

- Numerical Weather Prediction and Climate Modelling now embracing stochastic parameterization [e.g. Berner et al., BAMS, 2017]
 - Need to know underlying distribution of parameters
 - Numerical schemes need stochastic nature built in
 - Can run “ensembles”
 - Can fold in underlying distribution if well-behaved (e.g. Gaussian or log-normal)

PARAMETERIZATIONS

• Usually based upon geomagnetic activity and location

• How do we assess how good they are?
A GOOD PARAMETERIZATION

- A “good” parameterization is one which limits the variance \(\sigma \) in the quantity you are trying to predict, \(X \)
- \(\sigma \) should be small compared to the change in mean/median value with \(P \)

\[
P_1, P_2, P_3
\]
IS THAT THE CASE FOR WAVE PARAMETERIZATIONS?

Murphy et al., [2016]

Whistler-mode wave power @ GEO in morning sector

Watt et al., [2017]
CONSTRUCTION OF PARAMETERIZATIONS - 1

• Let’s get specific:
 • ELF/VLF momentum-space diffusion

\[
D_{\alpha\alpha}(L^+, p, \alpha, t) = \frac{e^2}{4\pi} \sum_n \left[\int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d\theta}{\cos\theta} \sum_i \frac{\hat{B}_i^2(\omega_i, t)G(\theta)|\Phi_{n,k}|^2}{|v_{||} - \partial\omega/\partial k_{||}|_{k_{||,j}} \left(\frac{n\Omega_{\text{ce}} - \omega_i\sin^2\alpha}{\cos\alpha}\right)^2}\right]
\]

- wavenormal angle (obs)
- wave intensity (obs)
- Range of integral obtained from obs

Requires Stix parameters \((\omega_{pe}/\Omega_e, \text{composition} - \text{obs})\)
CONSTRUCTION OF PARAMETERIZATIONS - 2

• Inputs usually modelled independently
 • Time-average of observations obtained over many years
 • Semi-empirical models for B, n

• What happens if you construct $D_{\alpha\alpha}$ from individual samples of magnetospheric parameters, then look at distribution/statistical description?
PILOT STUDY

- CRRES data
- Diffusion due to hiss for $2.5 < L < 3.5$
- Any MLT
- 187 points

- CRRES collects simultaneous
 - f_{pe}/f_{ce}
 - Wave intensity

\[
\log_{10}(\text{intensity}) = \log_{10}(f_{pe}/f_{ce})
\]
PLASMA/GYRO-FREQUENCY

The diagrams illustrate the occurrence of f_{pe}/f_{ce} in different regions of the L^* and half-orbit number parameters. The histograms show the distribution of f_{pe}/f_{ce} for different AE (Apindex) ranges.
WAVE AMPLITUDE

Wave intensity

L^*

Half-orbit number

$150 \rightarrow 200 \rightarrow 250 \rightarrow 300 \rightarrow 350 \rightarrow 400 \rightarrow 450 \rightarrow 500$

$24 \rightarrow 26 \rightarrow 28 \rightarrow 30 \rightarrow 32 \rightarrow 34$

$1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

$15 \rightarrow 100 \rightarrow 300 \rightarrow \infty$

All data

AE<100nT

100<AE<300nT

AE>300nT
PADIE DIFFUSION COEFFICIENTS

- Note, we have insufficient information from CRRES to study effects of spectral shape etc.

- Two inputs:
 - plasma:gyro frequency ratio
 - Wave intensity

- Coefficient of variation:
 - Wave amplitude: 0.98
 - plasma:gyro frequency: 0.25
 - Diffusion coefficient: 2.96
CONCLUSIONS AND FUTURE WORK

• Our parameterizations of diffusion in Outer Radiation Belt due to all wave types could be improved (see S. Bentley – this session)
 • parameterization of D_{ij}, not inputs to D_{ij}
 • D_{ij} likely to have larger variance than variance due to wave amplitudes alone
 • Parameterization with activity level currently leads to very large variance compared to difference in median values
 • Seek new parameterizations that minimize the variance in the diffusion coefficient

• Diffusion models with stochastic parameterizations