Calculation of the Relativistic: Electron Flux at Geostationary Orbit due to an Extreme Space Weather Event

R. B. Horne ${ }^{1}$

A. Hands ${ }^{2}$, K. A. Ryden² and W. Li3

1. British Antarctic Survey, Cambridge, UK
2. University of Surrey, Guildford, UK
3. Boston University, Boston, USA

AGU Chapman Conference, Cascais, Portugal, 5th-March 2018.

Extreme Space Weather Events

- Satellite Designers and Operators need to design for a 'reasonable worst case'
- At Geostationary orbit - electron flux $>2 \mathrm{MeV}$ is a key quantity
- Current analysis based on extreme value statistics [Koons, 2001; Meredith et al., 2015]
- Most risk assessments consider a CME driven event - e.g. 1859 'Carrington storm'
- But - what about other types of events? - Fast solar wind streams
- Here - use our physical understanding - to calculate $>2 \mathrm{MeV}$ electron flux

Coronal Holes - Source of Fast Solar Wind

- Coronal Holes - Regions of lower temperature, lower density and open magnetic flux on the Sun
- Source of fast solar wind - typically twice the average speed
- Co-rotate with the Sun - 27 day recurrence period
- Most common during the declining phase of the solar cycle

Coronal hole - in an X-ray image of the Sun

Lower Band Chorus Waves

- Chorus wave database organised by AE index - 9 satellites
- Fast SW streams characterised by large AE (> 750 nT)
- ~12 hours of MLT

British
Antarctic Survey

- Suggests most wave acceleration of electrons inside/near GEO orbit

Reasonable Worst Case - Model

- Assume a fast solar wind stream last 5 days $>750 \mathrm{~km} \mathrm{~s}-1$ corresponding to $\mathrm{AE}>750 \mathrm{nT}$
- Solve the Fokker-Planck Equation - [Glauert et al., 2014]
- Include:
- Doppler shifted cyclotron resonance with chorus waves
- Pitch angle and energy diffusion
- Use statistical wave properties - amplitudes B_{w}
- Use statistical plasma properties - $\mathrm{f}_{\mathrm{pe}} / \mathrm{f}_{\mathrm{ce}}$
- Loss to the atmosphere - for electrons diffused into the loss cone
- Substorm injections - modulate the flux at low energies ($\sim 150 \mathrm{keV}$)
- Omit radial diffusion - discuss later

British
Antarctic Survey

Wave Amplitudes

- Cumulative distribution of chorus wave amplitudes
- AE > 750 nT
- < 30° latitude
- 00:00-12:00 MLT
- Median
$\mathrm{Bw}=31 \mathrm{pT}$
- RMS
$\mathrm{Bw}=55 \mathrm{pT}$
- Skewed distribution - take the median (31 pT)
- For $400<\mathrm{AE}<750$
- Median
$\mathrm{Bw}=28 \mathrm{pT}$
- Mean
$\mathrm{Bw}=39 \mathrm{pT}$

Wave Spectrum

- Gaussian wave spectrum for lower band chorus waves based on satellite observations [Horne et al., 2013; Sicard-Piet et al., 2014]
- $\exp \left(-\left(X-X_{m}\right)^{2} / X_{w}{ }^{2}\right)$
$-\mathrm{f}_{\mathrm{m}} / \mathrm{f}_{\mathrm{ce}}=0.3$ width $\delta \mathrm{f} / \mathrm{f}_{\mathrm{ce}}=0.1$
- maximum upper frequency $\quad f_{u c u t}=f_{m}+2 \delta f$
- minimum lower frequency $\quad f_{\text {lcut }}=f_{m}-2 \delta f$
- Angular distribution peaked along the background field [Li et al., 2017; Agapitov et al., 2013]
$-\exp \left(-\left(X-X_{m}\right)^{2} / X_{w}{ }^{2}\right)$
$-\quad X=\tan \Psi$
- $X_{m}=0$
$-X_{w}=\tan 30^{\circ}$
- Wave power up to 30° latitude [Horne et al., 2013]

Reasonable Worst Case - Substorms

- CRRES data, $L^{*}=6$

- Set flux to median value at low energy boundary (150 keV)
- Flux increased by a factor of 10 followed by exponential decay - so that the flux drops by a factor of 10 in 2.75 hours
- Most probable time between substorms is 2.75 hours [Borovsky et al., 1993] - so repeat every 2.75 hours for 5 days
- Ensures flux only exceeds 98 percentile level a few per cent of the time
- Flux not allowed to exceed 10^{5} pfu

British
Antarctic Survey
NATURAL ENVIRONMENT RESEARCH COUNCIL

Plasma properties

- Cumulative probability distribution for $\mathrm{f}_{\mathrm{pe}} / \mathrm{f}_{\mathrm{ce}}$
- Data taken from wave experiment on CRRES - as this is one of the most accurate measurements of fpe
- Median $-\mathrm{f}_{\mathrm{pe}} / \mathrm{f}_{\mathrm{ce}}=5.16$
- Mean $-\mathrm{f}_{\mathrm{pe}} / \mathrm{f}_{\mathrm{ce}}=5.37$
- Almost Gaussian - use the mean
- Other studies have used $\mathrm{f}_{\mathrm{pe}} / \mathrm{f}_{\mathrm{ce}}=3$ [Thorne et al., 2013]
- may occur for some locations and short periods
- Using the mean seems more appropriate for an event lasting 5 days

Fast Solar Wind for 5 days + 5 days Low Activity Acceleration from a Pre-existing Radiation Belt

Substorm injections
Decay at lower energies

Electron flux at GEO

- Flux tends towards a limiting value
- Relatively insensitive to a pre-existing radiation belt
- 10^{6} level is from Meredith et al. [2015]

Shielding Electronic Components

- The integral flux $>2 \mathrm{MeV}$ corresponds to a current of $0.22 \mathrm{pA} \mathrm{cm}^{-2}$
- Exceeds the NASA recommended guideline of $0.1 \mathrm{pA} \mathrm{cm}{ }^{-2}$
- So how much shielding do we need?
- Use the AE 8 max electron spectrum and scale to get the correct flux $>2 \mathrm{MeV}$
- Use DICTAT code to calculate radiation transport through AI and assume planar geometry
- Need about 2.4 mm of Al shielding

British

Antarctic Survey

Sensitivity

Most sensitive to:

- The ratio $\mathrm{f}_{\mathrm{pe}} / \mathrm{f}_{\mathrm{ce}}$
- Wave amplitude B_{w}

Effects of Radial Diffusion

- We have assumed that the flux is determined by wave acceleration
- During frequent particle injections the PSD gradient is flat [Selesnick and Blake, 1997]
- Implies radial diffusion is very efficient
- If wave acceleration is higher at another L^{*} - this could set a higher level if RD is very efficient

Conclusions

- Present a 'reasonable worst case' for a fast solar wind stream lasting 5 days
- Wave acceleration increases the trapped flux $>2 \mathrm{MeV}$ at GEO towards a limiting value
- Exceeds the NASA recommended guidelines for electrostatic charging
- Need about 2.4 mm of Al shielding - between 0.5-1 mm more than current design
- Flux level is most dependent on wave power and fpe/fce
- CME driven storm compresses the magnetosphere - reduced flux at GEO
- Thus, satellites at GEO are more at risk from a fast SW stream lasting 5 days or more than they are from a CME driven storm

