Testing the theory behind ULF pulsation-related
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Abstract. We present a new mechanism for electron loss through precipitation into the
lonosphere due to a direct modulation of the loss cone via localized compressional ULF
waves. With localized ULF wave fields, modulation of the equatorial loss cone greatly
exceeds the change in pitch angle through adiabatic motions leading to enhanced
precipitation.

We further statistically investigate the relationship between compressional, poloidal and
toroidal mode ULF waves and ULF-modulated ionospheric precipitation. We find no
relationship between the amplitude of toroidal-mode ULF waves and ULF-modulated
precipitation. However, we find a significant relationship between ULF wave modes that
have a compressional component and ULF-modulated precipitation. This is true for
compressional waves at any MLT. A similar relation is found for day-side poloidal mode
ULF waves.

Current theory: compressional ULF wave fields modulate whistler-mode
wave growth rates (Coroniti and Kennel, 1970; Breneman et al., 2015)

Does this explain all energetic electron precipitation?
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 ULF waves have long been associated with energetic electron precipitation across a
huge range of energies 100ev — >1 MeV. e — —
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 ULF-modulated precipitation occurs at all MLTs in the heart of the Radiation Belts
(e.g., Spanswick et al. 2005)

« ULF-modulated precipitation occurs for both compressional and non-compressional
ULF waves (e.g., toroidal-mode FLRs; e.g., Rae et al., 2007 e

Do ULF waves simply modulate existing energetic electron precipitation or can
they cause energetic electron precipitaton where otherwise there would be none?
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Additional precipitation mechanisms Drift
« Modulation of electron drift paths (e.g., Brito

 ULF modulation of EMIC waves (e.g., "
Loto’aniu et al., 2009; Woodger et al., 2012)
suggest yes in a specific energy range

* Kinetic-scale FLRs (Rankin, Samson, Rae
etc) suggest yes in a specific energy range

et al., 2015) suggest not much .
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« Modulation of local bounce loss cone (e.g., 109 e b
Rae et al., 2017) suggest yes across all pitch-angle, degrees
energies with an energy dependence (©)
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(top) a thought experiment on the conservation of the
first and second invariants and breaking of the third
in response to a localised ULF wave field and it's
resultant increase in precipitation on ULF wave
timescales (Rae et al., 2017)

(left) simulations of ULF wave fields in the presence
of a plasmaspheric density plume, demonstrating a
significant change in ULF wave characteristics local
to the dusk sector (Degeling et al., 2017)

Storm-time Pc5 waves: What are they and how big can they get?
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Changes in the loss cone outweigh the changes in pitch angle due to conservation of
iInvariants (0.4° c.f., 0.1° in this case study)

Statistically, we find that the loss cone can change by 50%. Depending upon the shape
of the PSD close to the loss cone, this would result in significantly more precipitation
without requirement for any wave-particle interaction processes.

Storm-time Pc5 waves: Statistically linked to energetic electron
precipitation?

Using novel technique (AFINO;
Inglis et al., 2015) we analyse 12
years of GOES magnetic field
data to find discrete, g 41000
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Poloidal (radial) oscillations have
strongest relationship to riometer
pulsations

Toroidal (azimuthal) oscillations
have weakest relationship
Riometer response appears to
saturate for all wave modes
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Poloidal (radial) oscillations frequently result in strong riometer oscillations
across most of the dayside.

Compressional oscillations quite frequently result in strong riometer oscillations
across most of the dayside.

Toroidal (azimuthal) oscillations associated with riometer pulsations are only
seen in the post-midnight sector

A provocative comparison to Van Allen Probes " edan
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Van Allen Probe whistler-mode wave powers variable =
across the dayside magnetosphere s
Some evidence of more wave power in dusk than dawn, 3
107°

but does not cover all dayside MLTs

Summary and Conclusions

 ULF modulation of VLF growth rates can’t explain all ULF modulated
precipitation signhatures

« Large precipitation signatures across 100s eV — MeV are observed in the post-
noon sector
* Do current mechanisms explain entire range of energies?

« We present a simple and additive mechanism that may be important to
consider that can precipitate electrons across all energies
* In fact all of these mechanisms work best in tandem
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