Growing Peaks in Phase Space Density: A Survey of the Van Allen Probes Era

Alexander Boyd, Drew Turner, Geoff Reeves, Harlan Spence, Dan Baker, Bern Blake

AGU Chapman Conference

March 5, 2018

What Causes Radiation Belt Enhancements: A Survey of the Van Allen Probes Era

Alexander Boyd, Drew Turner, Geoff Reeves, Harlan Spence, Dan Baker, Bern Blake

AGU Chapman Conference

March 5, 2018

Motivation

- In general, studies of PSD have focused on individual event studies
- Local Acceleration can be the dominant process for some events
- With more than 4 years of events: when, where and how often are the different acceleration mechanisms dominant?

Differentiating with Phase Space Density

 Using Phase Space Density we can differentiate between radial diffusion (positive monotonic gradients) and local acceleration (growing peaks in PSD)

Data & Event Selection

- Enhancement Events from October 2012-April 2017
 - 80 Events where PSD at L*=5 went up by at least a factor of 2
- Using PSD data from Van Allen Probes and THEMIS
 - M = 700 MeV/G (~1.5 MeV in the Outer Belt)
 - K = 0.08 $R_E G^{1/2}$ for Van Allen Probes, K \leq 0.025 $R_E G^{1/2}$ for THEMIS
 - Only Use data outside L=6 for THEMIS (to try and avoid background contamination)
- THEMIS PSDs are multiplied by a constant factor of 1/3 to get a match with Van Allen Probes observations

Van Allen Probes Events

• Type 1 – Clearly defined growing peak

Van Allen Probe Events

Van Allen Probe Events

• Type 3 – Positive Gradients

Van Allen Probes Statistics

• 30% (24/80) of events have peak inside Van Allen Probes Apogee

Van Allen Probes **B:01/13 04:20-08:50** A:01/13 04:50-09:00 B:01/13 08:50-13:20 A:01/13 13:50-17:50 **B:01/13 13:20-17:50** B:01/13 17:50-22:25 **—** A:01/13 17:50-22:50 B:01/13 22:25-02:30 ----- A:01/13 22:50-03:25 B:01/14 02:30-07:25 A:01/14 03:25-07:45 B:01/14 07:25-11:55 A:01/14 07:45-12:20 B:01/14 11:55-16:25 A:01/14 12:20-16:45 B:01/14 16:25-20:50

Van Allen Probes **B:01/13 04:20-08:50** A:01/13 04:50-09:00 B:01/13 08:50-13:20 A:01/13 09:00-13:50 A:01/13 13:50-17:50 **B:01/13 13:20-17:50** B:01/13 17:50-22:25 **—** A:01/13 17:50-22:50 B:01/13 22:25-02:30 A:01/13 22:50-03:25 B:01/14 02:30-07:25 A:01/14 03:25-07:45 B:01/14 07:25-11:55 A:01/14 07:45-12:20 B:01/14 11:55-16:25 A:01/14 12:20-16:45 **B:01/14 16:25-20:50**

Van Allen-THEMIS Statistics

Event Type	Van Allen Probes Only	THEMIS & Van Allen Probes
Local Acceleration Dominant	24 (22)	70 (38)
Other	56 (20)	10 (4)
Total	80 (42)	80 (42)

Evente (Starmtime Evente)

- 70/80 (87.5 %) of the events have growing peaks, consistent with local acceleration
- Local acceleration is observed for both stormtime (Dst < -50 nT) and nonstormtime

Relation to Dst

- Relation between minimum Dst and the peak location
- Black line is the relation from Tverskaya et al., 2003 • $L_{max} = \frac{12.9}{|Dst_{max}|}$

Relation to the Plasmapause

- Relation to the average Plasmapause location from O'Brien and Moldwin [2003] (parameterized by Kp)
- For all events, the peak location is just outside the plasmapause, with 65/70 within 1.5 RE

L*

Mu Dependence of Gradients

- Transition at μ=200 MeV/G
- This corresponds to ~500 keV, which is the critical energy for chorus acceleration [Horne et al. 2005]

Mu Dependence of Gradients

- Normalized gradient:

 ^{PSD}_{apogee}-PSD_{peak}
 PSD_{peak}
- Blue (negative gradient) indicates a peaked profile

1 0 Normalized Gradient

-2

-3

Conclusions

- Local acceleration is the dominant acceleration mechanism for most (87%) MeV electron enhancements
- The radial location of the peak is well correlated with geomagnetic activity
- Local acceleration is observed for both stormtime (min Dst < -50nT) and non-stormtime
- Clear consistent transition between monotonic and peaked profiles at 500 keV (~200 MeV/G in the outer belt)

Backup Slides

THEMIS-Van Allen Probes Factor

• Match

observations during conjunctions (when Van Allen Probes and THEMIS see the same L* at the same time)

THEMIS-Van Allen Probes Factor (K)

• The factor is largely due to the difference in observed K

		With THEMIS	With THEMIS
Event Type	Van Allen Only	Growing Peaks	No Growing Peaks
Type 1	24 (22)	23 (21)	1(1)
Type 2	33 (16)	28 (14)	5 (2)
Type 3	23 (4)	19 (3)	4 (1)