UCL

Increases and decreases in radiation belt electron content with geomagnetic activity

Colin Forsyth¹, C.E.J. Watt², M. P. Freeman³, C.-L. Huang⁴, A. J. Boyd⁵, M. Lockwood², K. R. Murphy⁶, I. J. Rae¹, H. E. Spence⁴, R. Caro Carretero^{1,7}

¹Mullard Space Science Laboratory, Dorking, United Kingdom,
 ²University of Reading, Reading, United Kingdom,
 ³British Antarctic Survey, Cambridge, United Kingdom,
 ⁴University of New Hampshire, Durham, NH, United States,
 ⁵New Mexico Consortium, Los Alamos, NM, United States,
 ⁶NASA Goddard Space Flight Center, Greenbelt, MD, United States,
 ⁷Comillas Pontifical University of Madrid. ICAI- School of Engineering. Spain

This research was funded in part by the Natural Environment Research Council (NERC) Highlight Topic Grant NE/P017185/1 and NE/P017274/1 (Rad-Sat) and a NERC Independent Research Fellowship.

colin.forsyth@ucl.ac.uk

Is geomagnetic activity a good proxy for the physics of the radiation belts?

- Physics tells us that most variations in radiation belts result from wave-particle interactions
- Wave-power varies with geomagnetic activity levels

BUT...

 Distribution of wave power with geomagnetic activity covers many orders of magnitude

Total Radiation Belt Electron Content (TRBEC)

- After Baker et al. [2004], Boyd [2016], Huang et al. [in prep]
- Integrate MagEIS PSD from RBSP-A and RBSP-B for:
 - μ=1000-2000 MeV/G ("core" population)
 - across L and K
 - every half orbit of Van Allen Probes
- Interpolate onto 3 h time-series

Auroral indices with reduced latitudinal dependence

- AL takes minimum H deflection from 12
 auroral zone stations
- If auroral currents move away from AL latitudes, same currents will give different AL

- Particular issue for large events
- c.f. using L or L*
- SuperMAG AL (SML) uses >100 latitudinally scattered stations
 - Newell & Gjerloev, [2011]; Gjerloev, [2012]

Contingency table analysis of the radiation belts

Contingency tables compare to independent categories to check for a link

Â

 No information on size of change or level of activity is used

Analysis of Predictive Skill from contingency tables

- Quantitative assessment of Skill can be calculated
- Simplest is accuracy:

$$Acc = \frac{(a+d)}{(a+b+c+d)}$$

Heidke [1926] Skill Score uses all components:

$$HSS = \frac{2(ad - bc)}{(a + c)(c + d) + (a + b)(b + d)}$$

- HSS ranges from -∞ to 1
 - 0 indicates no skill
 - 1 indicates perfect skill
- Used to show substorms have significant influence on radiation belts for up to 6 days [Forsyth et al. 2016]

 $\begin{array}{l} \textit{Accuracy} = 97\% \\ \textit{HSS} = 0.49 \end{array}$

Defining activity based on skill

- Vary threshold of SML or SYM-H and time threshold broken to maximise HSS
- Best SYM-H skill (HSS = 0.392):
 > 42 mins/3 h, SYM-H < -16 nT
- Best SML skill (HSS = 0.294):
 > 1 mins/3 h, SML < -251 nT
- BEST SKILL- SML with persistence:
 > 1 mins/3 h, SML < -251 nT
 4 out of previous 7 intervals active

(HSS=0.421; Accuracy=74%)

Proportional changes described by three Gaussians

- Triple-Gaussians fit give $\chi^2 < 0.08$, p-value~1
- Fitted Gaussians are:
 - Narrow: μ_N = -1.75, σ_N =2.07 (% per 3 h)
 - Wide +: μ_{W+} = 3.47, σ_N =8.84 (% per 3 h)
 - Wide : $\mu_{W_{-}}$ = -7.26, σ_{N} =5.14 (% per 3 h)

- Contribution of each Gaussian varies with activity:
 - 85% Quiet from Narrow (loss dominant)
 - 85% Persistently Active times from Wide+
 - Transiently Active times mixed (45%/ 30%/25%)

Changes in radiation belt content are stochastic

- Quiet Gaussian is sufficiently narrow that most changes are decreases, thus losses dominate
 - Mean loss rate equivalent to 13.5% per day
 - E-folding of 6.88 days, comparable to GEO [Meredith et al., 2006]
 - 'Calms before storms' [Borovsky & Denton, 2009] appear at μ - σ
 - Wave-particle interactions with hiss or outward diffusion? Physics is missing in our study
- Transiently Active times show mostly losses, but a greater proportion of large losses
- Persistently Active Gaussian is so wide that both losses and gains appear naturally
 - 25% of losses of more than -4% in 3 h;
 - 25% show changes of between \pm 4% per 3 h
 - 50% show increases of more than 4% per 3 h

≜UCL

Changes in radiation belt content are Gaussian; Distributions are separated by geomagnetic activity

- SML can indicate increases or decreases in radiation belt content with 74% accuracy and moderate skill
 - SML < -251 nT for four of seven 3 h intervals
- Changes in TRBEC are described by a combination of three Gaussians
 - Quiet times dominated by narrow, loss dominant Gaussian
 - Persistently active times dominated by wide, gain dominant Gaussian
 - Transiently active times are a mix, but loss dominant

Submitted to J. Geophys. Res., Email: *colin.forsyth@ucl.ac.uk*

Backup slides

Examination of parameter space of geomagnetic indices

Substorm impact on the radiation belts

Best skill contingency table

	TRBEC DECREASE	TRBEC INCREASE
QUIET	1550	447
ACTIVE	311	608