

Dynamic mechanisms of rapid dropout in the outer radiation belt observed after the Coronal Mass Ejection associated with Shock in July 2016

Da Silva, L. A.¹; Alves, L.R.¹; Souza, V.M.¹; Jauer, P.R.¹; Marchezi, J.P.¹; Da Silva, G. B.; Medeiros, C.¹; Grala, M.¹; Schmitz, R. G.; Rockenbach, M.¹; Alves, M. V.¹; Baker, D.³; Kletzing, C.⁴; Kanekal, S.G.²; Mei-Ching, F.; Sibeck, D.²; Dal Lago, A.¹, Vieira, L.E.A.¹

¹Instituto Nacional de Pesquisas Espaciais – INPE, São José dos Campos, SP, Brazil.
²NASA Goddard Space Flight Center, Greenbelt, MD, USA.
³Laboratory for Atmosphere and Space Physics - LASP, Bolder, CO. USA.
⁴University of Lowa, Lowa City, IA, USA

Rapid dropout observed by Van Allen Probes - VAP

Rapid dropout observed by Van Allen Probes - VAP

From ~23h00 – July 19, 2016

Rapid dropout observed by Van Allen Probes - VAP

From ~02h00 – July 20, 2016

Orbit of VAP A and B

Rapid dropout during CME associated to shock

Rapid dropout during CME associated to shock

Rapid dropout during CME associated to shock

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Rapid dropout Order of magnitude L*=5.2 Re

VAP A

VAP B

Rapid dropout Order of magnitude L*< 5 Re

VAP A

VAP B

High energy electron flux Interplanetary Medium Conditions – ACE satelite

High energy electron flux

Interplanetary Medium Conditions – ACE satelite

Mechanisms investigated

Magnetopause Shadowing

Magnetopause standoff distance

- Outward Radial diffusion
 - ULF waves

6	
R	
INPE	

- Magnetopause Shadowing
 - Magnetopause standoff distance
 - Shue et al, 1998 Model
 - Magnetohydrodynamic Model (BATS-R-US)

INPE

Magnetopause standoff distance -MHD-

Magnetopause standoff distance -MHD-

Magnetopause standoff distance -MHD-

2016/07/19-23:02:00 UT

Radial Diffusion

- ULF waves activity (Pc5)

- Van Allen Probes Emfisis (In situ)
- IMAGE network (Ground data)
- Magnetohydrodynamic Model (SWMF/BATS-R-US) (Gombosi et al., 2004; Tóth et al., 2011)
- Radial diffusion coefficient D_{LL} by Ozeke et al., 2014

ULF waves activity – Polarization modes

ULF Power Spectral Density – PSD IMAGE network

ULF power spectral density calculated from global MHD simulation SWMF/BATS-R-US

- Power spectral density were calculated for different magnetic local time (MLT)
- Calculation were performed for the compressional, toroidal and azimutal ULF wave modes
- In the following we present the PSD for MLT 12, considering the CME arrival at the Earth's magnetosphere.
- Neither Van Allen Probes A and B were at the magnetospheric dayside during the shock arrival
- The time interval considered in the FFT is shown for each PSD plot
- ULF waves evolve in the radiation belts region as a function of the solar wind structure arrival

24:30 to 01:00

01:30 to 02:00

Radial diffusion Coefficient (D_{LL}) Ozeke et al., 2014

Conselho Nacional de Desenvolviment Científico e Tecnológico

Mechanism investigated

- Magnetopause Shadowing
 - Magnetopause standoff distance
- Outward Radial diffusion
 - ULF waves

Suggestions

Magnetopause shadowing contribution: $L^* = ^5-6$ Re

Suggestions

Magnetopause shadowing contribution: $L^* = ^5-6$ Re

ULF contribution: $L^* = ^4-6$ Re

Suggestions

ULF contribution: L*= ~4-6 Re

To do list

- EMIC wave activity
- 1D radial diffusion simulation (D_{LL} Ozeke et al., 2014)

Thank you !!

E-mail: <u>ligia.alves01@gmail.com</u> <u>ligia.silva@inpe.br</u>

MHD Model Description

To perform this numerical study we used:

1- Space Weather Modeling Framework/Block-Adaptive Tree-solar Wind Roe-Type Upwind Scheme (SWMF/BATS-R-US)(Gombosi et al., 2004; Tóth et al., 2011 and references therein).

2- Simulation domain was set to: $-224 \le x \le 32(RE)$; $-64 \le y \le 64(Re)$; $-64 \le z \le 64(RE)$, where x, y and z are Geocentric Solar Magnetospheric (GSM) Coordinates.

3- Inner Boundary of the Global Magnetosphere (GM) is located at ~ 2,5 RE.

4-The models that are coupled to the inner magnetosphere are:

5- Ionospheric Model (IE)(Ridley and Liemohn, 2002; Ridley, Gombosi, and DeZeeuw, 2004).

6- Rice Convection Model (RCM, De Zeeuw et al. (2004).

7- We used the resolution of the 1/8 RE in a box surrounding the Earth with the following dimensions: $-7 \le x \le 7$ RE, $-7 \le y \le 7$ RE, and $-3 \le z \le 3$ RE. This high resolution grid that we chose wish was to resolve electric and magnetic field fluctuations in the ULF range within the Van Allen belts region, which is entirely confined inside this box.

Power Spectral Density

- Quanto ao Psd dos dados de solo,
- São 18 magnetômetros da rede IMAGE. Combrem uma faixa latitudinal entre ~35° e ~67° N.
- Para cada magnetômetro é feito o espectro de potência e extrai a densidade na frequência média do intervalo.
- Essa densidade média é organizada de acordo com a latitude (convertida em L-Shell).
- A resolução dos dados é de 1s, tanto para os dados de solo como os da VAP.