Dynamic mechanisms of rapid dropout in the outer radiation belt observed after the Coronal Mass Ejection associated with Shock in July 2016

1Instituto Nacional de Pesquisas Espaciais – INPE, São José dos Campos, SP, Brazil.
2NASA Goddard Space Flight Center, Greenbelt, MD, USA.
3Laboratory for Atmosphere and Space Physics - LASP, Bolder, CO. USA.
4University of Lowa, Lowa City, IA, USA
Rapid dropout observed by Van Allen Probes - VAP
Rapid dropout observed by Van Allen Probes - VAP

From ~23h00 – July 19, 2016
Rapid dropout observed by Van Allen Probes - VAP

From ~02h00 – July 20, 2016
Orbit of VAP A and B
Rapid dropout during CME associated to shock
Rapid dropout during CME associated to shock

REPT FEDU B (Energy: 2.60 MeV) - OMNI directional

Flux (cm$^{-2}$ s$^{-1}$ sr$^{-1}$ MeV$^{-1}$)

L\odot (R\odot)

Flux (cm$^{-2}$ s$^{-1}$ sr$^{-1}$ MeV$^{-1}$)

2.6MeV em L*5.2

IMF (nT)

Bz

Bt
Rapid dropout during CME associated to shock
Rapid dropout
Order of magnitude $L^*=5.2$ Re

VAP A

VAP B
Rapid dropout
Order of magnitude $L^* < 5 \text{ Re}$

VAP A

VAP B
High energy electron flux
Interplanetary Medium Conditions – ACE satellite

VAP A

VAP B
High energy electron flux
Interplanetary Medium Conditions – ACE satellite

VAP A

VAP B
Mechanisms investigated

• Magnetopause Shadowing
 – Magnetopause standoff distance

• Outward Radial diffusion
 – ULF waves
• Magnetopause Shadowing

 – Magnetopause standoff distance

• Shue et al, 1998 Model
• Magnetohydrodynamic Model (BATS-R-US)
Magnetopause standoff distance
-Shue Model-
Magnetopause standoff distance
- Shue Model -
Magnetopause standoff distance

-MHD-

2016/07/19-22:58:30 UT

2016/07/19-23:02:00 UT

2016/07/19-23:05:00 UT

INPE

CNPq
Magnetopause standoff distance -MHD-
Magnetopause standoff distance

-MHD-

2016/07/19-22:58:30 UT

2016/07/19-23:02:00 UT

2016/07/19-23:05:00 UT

~6Re
• Radial Diffusion

– ULF waves activity (Pc5)

• Van Allen Probes - Emfisis (In situ)
• IMAGE network (Ground data)
• Magnetohydrodynamic Model (SWMF/BATS-R-US) (Gombosi et al., 2004; Tóth et al., 2011)
• Radial diffusion coefficient D_{LL} by Ozeke et al., 2014
ULF waves activity – Polarization modes
ULF Power Spectral Density – PSD
IMAGE network

ULF wave Power ($1 \text{ mHz} - 10 \text{ mHz}$)

L star [RE]

2016-07-16 2016-07-17 2016-07-18 2016-07-19 (UT) MLT

Log10 (Mean Wave Power) [nT2/Hz]
ULF power spectral density calculated from global MHD simulation

SWMF/BATS-R-US

- Power spectral density were calculated for different magnetic local time (MLT)
- Calculation were performed for the compressional, toroidal and azimuthal ULF wave modes
- In the following we present the PSD for MLT 12, considering the CME arrival at the Earth’s magnetosphere.
- Neither Van Allen Probes A and B were at the magnetospheric dayside during the shock arrival
- The time interval considered in the FFT is shown for each PSD plot
- ULF waves evolve in the radiation belts region as a function of the solar wind structure arrival
Radial diffusion Coefficient (D_{LL})
Ozeke et al., 2014
Mechanism investigated

- Magnetopause Shadowing
 - Magnetopause standoff distance

- Outward Radial diffusion
 - ULF waves
Suggestions

Magnetopause shadowing contribution: $L^* = \sim 5-6 \text{ Re}$

REPT FEDU B (Energy: 2.60 MeV) - OMNI directional
Suggestions

Magnetopause shadowing contribution: $L^* \approx 5-6$ Re

REPT FEDU B (Energy: 2.60 MeV) - OMNI directional
Suggestions

ULF contribution: $L^* \approx 4-6$ Re

REPT FEDU B (Energy: 2.60 MeV) - OMNI directional
Suggestions

ULF contribution: $L^* = \sim 4-6 \text{ Re}$

REPT FEDU B (Energy: 2.60 MeV) - OMNI directional

Flux [cm$^{-2}$ s$^{-1}$ sr$^{-1}$ MeV$^{-1}$]
To do list

• EMIC wave activity
• 1D radial diffusion simulation (D_{LL} – Ozeke et al., 2014)
Thank you !!

E-mail: ligia.alves01@gmail.com
 ligia.silva@inpe.br
MHD Model Description

To perform this numerical study we used:

1- Space Weather Modeling Framework/Block-Adaptive Tree-solar Wind Roe-Type Upwind Scheme (SWMF/BATS-R-US)(Gombosi et al., 2004; Tóth et al., 2011 and references therein).

2- Simulation domain was set to: \(-224 \leq x \leq 32\)(RE); \(-64 \leq y \leq 64\)(Re); \(-64 \leq z \leq 64\) (RE), where x, y and z are Geocentric Solar Magnetospheric (GSM) Coordinates.

3- Inner Boundary of the Global Magnetosphere (GM) is located at \(\sim 2,5\) RE.

4- The models that are coupled to the inner magnetosphere are:

5- Ionospheric Model (IE)(Ridley and Liemohn, 2002; Ridley, Gombosi, and DeZeeuw, 2004).

6- Rice Convection Model (RCM, De Zeeuw et al. (2004).

7- We used the resolution of the 1/8 RE in a box surrounding the Earth with the following dimensions: \(-7 \leq x \leq 7\) RE, \(-7 \leq y \leq 7\) RE, and \(-3 \leq z \leq 3\) RE. This high resolution grid that we chose wish was to resolve electric and magnetic field fluctuations in the ULF range within the Van Allen belts region, which is entirely confined inside this box.
Power Spectral Density

• Quanto ao Psd dos dados de solo,
• São 18 magnetômetros da rede IMAGE. Combrem uma faixa latitudinal entre ~35° e ~67° N.
• Para cada magnetômetro é feito o espectro de potência e extrai a densidade na frequência média do intervalo.
• Essa densidade média é organizada de acordo com a latitude (convertida em L-Shell).
• A resolução dos dados é de 1s, tanto para os dados de solo como os da VAP.