

Laboratory Investigation of Nonlinear Whistler Wave Processes*

Erik Tejero, <u>Chris Crabtree</u>, Lon Enloe, David Blackwell, Bill Amatucci, Guru Ganguli erik.tejero@nrl.navy.mil Plasma Physics Division, Naval Research Laboratory

*Work supported by NRL base program and NASA Grant No. NNH17AE701

NRL Space Physics Simulation Chamber

March 8, 2018

Collaborators

- NRL PPD

- Laboratory Experiments
 - Lon Enloe (NRL)
 - Bill Amatucci (NRL)
- Theory
 - Chris Crabtree (NRL)
 - Guru Ganguli (NRL)
- Space Observations
 - David Malaspina (UC Boulder)
- Simulations
 - Dong Lin (VA Tech)
 - Wayne Scales (VA Tech)

Studying the Building Blocks of Weak Turbulence

Tejero et al., Phys. Plasmas, 22, 091503 (2015)

Verification of Nonlinear Conversion of ES to EM

Tejero et al., Sci. Rep., 5, 17852 (2015) and Tejero et al., Phys. Plasmas, 23, 055707 (2016)

Wave Distribution Function Technique Validated

Tejero et al., Phys. Plasmas, 22, 091503 (2015)

Triggered Emissions Experimental Setup

Chapman Conference on Particle Dynamics in the Earth's Radiation Belts – Cascais, Portugal

Triggered Emission Observed in Laboratory

Nonlinear Scattering in Triggered Emission Data

March 8, 2018

March 8, 2018

Chorus-like Emissions Exhibit Subpacket Structure

Chorus-like emissions observed in laboratory experiments.

March 8, 2018

Laboratory Simulation of Broadband Noise in Boundary Layers

- Plasma Sheet/Lobe Boundary Layer simulated by interpenetrating plasmas
- EIH wave generation around the lower hybrid frequency relaxes boundary layer
- Results in lower frequency shear-driven waves to form broadband electrostatic noise

Μ	lar	ch	8	. 2	20	18
			· •	/ -	-	

U.S. NAVAL

RESEARCH

In Situ Observations of Dipolarization Fronts

March 8, 2018

Self-consistent E-field Generation Observed in Lab

March 8, 2018

.napman Conference on Particle Dynamics in th Earth's Radiation Belts – Cascais, Portugal

Laboratory Experiments Verified EIH Instability

Sheared transverse flows drive lower hybrid waves

March 8, 2018

EIH Instability Experimental Verification

lower hybrid eigenmode localized to the shear layer as in DF

March 8, 2018

Chapman Conference on Particle Dynamics in the Earth's Radiation Belts – Cascais, Portugal

Divin *et al.* Identified Lower Hybrid Drift Instability as Source of Observed Lower Hybrid Waves

[Divin *et al.* 2015]

- $(k_{\hat{x}}\rho_e, k_{\hat{y}}\rho_e) \sim (-0.6, 0.3)$
- LHDI modes should be damped

Eigenmode has no single k_x to Doppler shift

Reanalysis Shows that Sheared Flows Can Drive Observed Lower Hybrid Waves

Relevant Parameters

Density	$n = 3.8 \times 10^5 \text{ m}^{-3}$
Magnetic Field	$B_z = 26 \text{ nT}$
Ion Diamagnetic Drift	$V_{Di} = 1.9 \times 10^5 \text{ m/s}$
Electric Field	$E_x = -20 \text{ mV/m}$
E×B Drift	$v_E = 1.7 \times 10^6 \text{ m/s}$
Electric Field Gradient Scale Length	$L_E = 54 \text{ km}$
Wave Vector in E×B Direction	$k_y = 3 \times 10^{-5} \text{ m}^{-1}$

Analysis Results

- LHDI: $k_y \rho_e \sim 1$
- EIH: $k_y L_E \sim 1$

$$k_y \rho_e = 0.2 \text{ vs } k_y L_E = 1.1$$

$$\Delta = -9.3$$

Propagates in E×B direction

Conditions above threshold for EIH and wavelength is consistent.

Whistler Waves Can Also Be Driven by Sheared Flows

Whistler Waves Exhibit Characteristics Consistent with Particle Trapping

• f < 0.5 f_{ce}

- m = 1
- k_z ~ 10 m⁻¹
- $E_{res} \sim 1-10 \text{ keV}$

Chapman Conference on Particle Dynamics in the Earth's Radiation Belts – Cascais, Portugal

Velocity Shear-driven Whistler Waves in Lab Are Observed with an Upper and Lower Band

- Large amplitude bursts
- Chirp both up and down
- Lower band has faster chirp rates

Summary

- Dipolarization fronts provide a variety of sources of free energy to drive waves
- Laboratory experiments verified EIH instability theory
- Lab and theory results provide quantitative tests to determine source of waves
- Analysis demonstrates that sheared flows are capable of driving the observed lower hybrid waves
- Lab experiments demonstrate that electromagnetic whistler waves can also be driven by sheared flows
- Could observed whistler waves also be due to the EIH instability?

Begun a coordinated study between lab, theory, modeling, and space observations to study these waves at dipolarization fronts

Local Approximation Predicts Instability Threshold

()

$$\overline{\omega}^{3} + \left(2\frac{\delta^{2}}{1+\delta^{2}}\frac{\overline{V}_{0}}{\overline{k}_{y}} - \overline{k}_{y}\overline{V}_{0}\right)\overline{\omega}^{2} - \overline{\omega} + \overline{k}_{y}\overline{V}_{0} = 0$$

$$\overline{\omega} = \frac{\omega}{\omega_{LH}}, \delta = \frac{\omega_{pe}}{\Omega_{e}}, \overline{V}_{0} = \frac{v_{E}}{\omega_{LH}L_{E}}, \overline{k}_{y} = k_{y}L_{E}$$

$$ax^{3} + bx^{2} + cx + d = 0$$
Diamagnetic Drift Frequency: $\omega_{De,i} = kv_{De,i}$
Shear Frequency: $\omega_{s} = \frac{dv_{E}}{dx}$

 $\Delta = 18abcd - 4b^{3}d + b^{2}c^{2} - 4ac^{3} - 27a^{2}d^{2}$

If $\Delta < 0$, then 1 real solution and two complex conjugate solutions

Effects of Nonuniform B on EIH

- Increased growth rate
- No effect on wavelength

