Global Simulations of Wave-Particle Interactions in the Radiation Belts: March 17, 2018 Acceleration Event

Scot R. Elkington1, Anthony A. Chan2,
Liheng Zheng1, Shah Alam2, Jay Albert4,
Allison Jaynes5, Dan Baker1

1 LASP, University of Colorado
2 Rice University
3 University of Texas
4 Air Force Research Laboratory
5 University of Iowa

AGU Chapman Conference
Particle Dynamics in the Radiation Belts
Cascais, Portugal
March 9, 2018
Global simulations of the radiation belts

• Fokker-Planck simulations

\[\frac{df}{dt} = \frac{1}{\tau} \sum_{i,j} \frac{\partial}{\partial J_i} \left(\mathcal{D}_{ij} \frac{\partial f}{\partial J_j} \right) - \frac{f}{\tau} + S \]

• Requires empirical specification of stochastic transport coefficients based on theory and observations
• Generally cannot model nondiffusive effects (e.g. advection/injection)

• MHD/particle simulations

• Global MHD model provides time-evolving electric and magnetic fields.
• Handles radial transport self-consistently
• Generally cannot model high frequency wave effects, e.g. energy and pitch angle scattering due to chorus, EMIC, etc.
Non-MHD effects via SDE methods

• Every diffusion equation is mathematically equivalent to a set of stochastic differential equations (SDEs; e.g., Tao, Chan, and Albert, [JGR, 2008]):

\[dX = b \, dt + \sigma \, dW \]

• \(dX \) is a change in a stochastic variable \(X \) over a time \(dt \) (e.g. \(X \) may be a pitch angle, energy, or an adiabatic invariant).

• \(dW = \sqrt{t}N(0,1) \), where \(N \) is a Gaussian random variable \(\in [0,1] \).

• \(b(X,t) \) and \(\sigma(X,t) \) are coefficient functions. e.g., for a 1-dimensional diffusion equation

\[\frac{\partial f}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial f}{\partial x} \right) = D \frac{\partial^2 f}{\partial x^2} + \frac{\partial D}{\partial x} \frac{\partial f}{\partial x} \]

\[b = \frac{\partial D}{\partial x} \]

\[\sigma = \sqrt{2D} \]

• Monte Carlo solution of the SDE yields random-walk trajectories in \(X \).
We use diffusion coefficients calculated by the PADIE code (R. Horne, S. Glauert, BAS; *J. Geophys. Res.* 110, 2005).

- Diffusion in energy and pitch angle, including cross terms.
- Converted to diffusion in M-K space assuming dipole background field.
- Covers the effect of magnetospheric chorus waves on energetic particles
- L and K_p-dependent: $K_p < 2$, $2 < K_p < 4$, and $K_p > 6$
2d simulation domain
$D_{MM} = 0$

$D_{MM} \neq 0$

Radial profile
3d Sims: 3/17/2013 QARBM ‘Storm Enhancement Event’

March 17, 2013 enhancement event

Epoch: 2013-03-17/20:28

- $E = 54$ keV
- $E = 105$ keV
- $E = 240$ keV
- $E = 590$ keV
- $E = 1050$ keV
- $E = 2000$ keV

Epoch Time [hr]
We have undertaken global 3d LFM-MHD simulations of the 3/17/2013 storm period, and used these results to drive test particle simulations of energetic particle populations in the inner magnetosphere and plasmasheet.
3d Sims: 3/17/2013 QARBM ‘Storm Enhancement Event’

- Provided by Wen Li and Qianli Ma (Boston U.)
- Upper and Lower band chorus waves as a function of L, MLT, and UT inferred from POES electron measurements.
- $D_{\alpha\alpha}$, D_{pp}, and $D_{\alpha p}$ calculated as a function of particle energy and pitch angle.
- Coefficients converted to M and p_\parallel for particle code.
3d simulations: K2-GC

- K2-GC is a 3d guiding-center test particle code adapted to include diffusive effects of VLF activity (chorus, hiss, etc).
- Each particle is periodically “kicked” in M and p_\parallel in the B-min surface in accordance with specified diffusion coefficients.

\[
M_{j+1} = M_j + b_M \delta t + \sigma_{MM} \sqrt{\delta t} N_M + \sigma_{Mp_\parallel} \sqrt{\delta t} N_{p_\parallel}
\]
\[
p_{\parallel j+1} = p_{\parallel j} + b_{p_\parallel} \delta t + \sigma_{p_\parallel M} \sqrt{\delta t} N_M + \sigma_{p_\parallel p_\parallel} \sqrt{\delta t} N_{p_\parallel}
\]

with

\[
\sigma_{MM} = \sqrt{2 D_{MM}}, \quad \sigma_{Mp_\parallel} = \sqrt{2 D_{p_\parallel M} / D_{p_\parallel p_\parallel}}
\]
\[
\sigma_{p_\parallel M} = \sqrt{2 D_{p_\parallel M} / D_{MM}}, \quad \sigma_{p_\parallel p_\parallel} = \sqrt{2 D_{p_\parallel p_\parallel}}
\]

and

\[
b_M(t, M, p_\parallel) = \frac{1}{G} \frac{\partial}{\partial M} (GD_{MM}) + \frac{1}{G} \frac{\partial}{\partial p_\parallel} (GD_{M p_\parallel})
\]
\[
b_{p_\parallel}(t, M, p_\parallel) = \frac{1}{G} \frac{\partial}{\partial M} (GD_{p_\parallel M}) + \frac{1}{G} \frac{\partial}{\partial p_\parallel} (GD_{MM})
\]

where G is the Jacobian scale factor that results from the conversion of $D_{pp}, D_{\alpha \alpha}$ to $D_{MM}, D_{p_\parallel p_\parallel}$ (dipole approximation).
D_{xx} validation, single-particle tests

SDE results were validated against given diffusion coefficients.

- Kick multiple particles, calculate $\langle (\Delta x)^2 \rangle$ as a function of time.
- D_{xx} inferred from slope of fit.

Test particle simulations were then conducted to validate correct behavior as function of L, W, and MLT.

\[D_{pp} = 1.073765 \times 10^{-5} \text{ s}^{-1} \]

Linear Fit: 1.07849 s^{-1}
Proof of concept: test particle simulations at constant M, K

Test simulations were undertaken for the March 17-18, 2013 GEM “Storm-time acceleration event” (http://bit.ly/28UnLpw).

- Constant-K surface calculation, a la Schulz and Lanzerotti (1974).
 - Reference field line and mirror latitude selected.
 - K calculated for reference point
 - B_m calculated for other field lines base on calculated K.
 - Latitude on other L shells calculated for given B_m.

- Time-backwards test particle/SDE simulations
 - Particles of constant M distributed at points along constant K surface
 - Each particle run backwards until it encounters a boundary or initial condition
 - Phase space density inferred from AE-8 fluxes at IC/BC.
 - PSD and Liouville’s theorem used to construct snapshots of evolving PSD profiles as function of time.
Initial results: 3/17/2013 event-specific diffusion coefficients

3/17/2013, 6UT

3/17/2018, 6UT

3/17/2013, 12UT

3/17/2013, 18UT

3/17/2013, 24UT

3/17/2018, 24UT
9/20/2007 ISSI event
- 2d simulation
- Diffusion in M only
- BAS (averaged) diffusion coefficients

3/17/2013 ISSI event
- 3d simulation
- Diffusion in M and K
- Event-specific diffusion coefficients
Remarks/Conclusions

- K2-GC is a framework for comprehensive simulations of energetic particle dynamics in the inner magnetosphere
 - Radial transport (diffusion, advection) handled self-consistently via Test Particle/Global MHD simulations
 - Energy and pitch angle diffusion via empirical or event-specific coefficients (ESCARGOT!)
- Remarks:
 - Thus far, relatively computationally-expensive.
 - Obtaining event-specific coefficients is fairly involved.
 - Best-suited to time-backward simulations from a grid or point of interest (e.g. Van Allen probes)
 - On the other hand, its an embarrassingly-parallel problem
 - Long-time simulations suffer from reduced statistics due to bounce cone losses
- To Do (Too Due?):
 - Implementing existing 3d MHD/Test particle approaches to K2-GC
 - Optimizing computational efficiency
 - Quantitative Assessment of (this) Radiation Belt Model
 - More events! (e.g. QARBM storm-time loss, non-storm acceleration, etc)
Thank you.
Stuff. And also Things.
K2-BA: a comprehensive radiation belt simulation method

- Global transport simulations accomplished via an efficient bounce-averaged test particle code (Roederer 1970):

\[\langle \mathbf{v}_0 \rangle = \frac{\mathbf{E}_0 \times \mathbf{B}_0}{B_0^2} + \frac{2p}{qT_B B_0^2} \nabla_0 I \times \mathbf{B}_0, \]

\[I = \int_{s_m}^{s_m'} \sqrt{1 - \frac{B(s)}{B_m}} ds, \]

\[T_B = \frac{2}{\nu} \int_{s_m}^{s_m'} \left(1 - \frac{B(s)}{B_m}\right)^{-1/2} ds \]

\[K = \sqrt{B_m} I = \int_{s_m}^{s_m'} \sqrt{B_m - B(s)} ds \]

\[= J / 2 \sqrt{2m_0 M}, \]

\[p = \sqrt{2mMB_m} = \gamma mv \]

Procedure: pick first and second invariants and equatorial crossing point, calculate field geometry integrals and bounce period. From results, interpolate to find \(V \) for arbitrary \(M, K, \alpha, \gamma \) and solve for time-evolving position.
Advantages of SDE methods

- Unlike the finite-difference-like methods, the SDE method does not need a grid. Complicated boundary conditions are handled easily.

- The SDE method is very efficient when solutions are only required at a limited number of points in the phase space.

- For solutions at many points, SDE codes can be parallelized very efficiently.

- The SDE method easily handles off-diagonal diffusion terms in 2D and 3D (full 3D).

- The SDE method is very robust: it can tolerate several orders of magnitude difference in the solution.
Simulation of a simplified HSS storm (Oct. 2002): SDE + F/P

- D_{LL} uses Brautigam and Albert [2000]

\[D_{LL} = 10^{0.506 Kp} \times 9.325 L^{10}, \quad Kp = 3 \]

which is comparable in magnitude to D_{LL} from LFM simulations.

- Chorus wave diffusion coefficients are converted from $\alpha_0 - p$ diffusion coefficients assuming no L-dependence.

- D_{nL} and D_{KL} are set as zero.
9/20/2007 flux dropout/recovery
FIRST RESULTS: HSSW storm 9/20/2007; 1000 MeV/G

Conserving M

BAS Chorus Diffusion
Simulation of a simplified HSS storm (Oct. 2002): SDE + F/P

- Three simulations were made:
 - radial diffusion only;
 - chorus wave diffusion only;
 - both.

- Though with simplified initial and boundary conditions, radial diffusion reproduces the observed increase.

- Chorus wave diffusion is too strong to explain the PSD change in this HSS at this M and K.

S. Elkington, March 9, 2018