Quantifying Properties and Atmospheric Consequences of Medium Energy Relativistic Electron Precipitation from the Radiation Belts: Coordinated Studies Using FIREBIRD, Van Allen Probes Measurements and Whole Atmosphere Modeling

Harlan E. Spence, Katherine Duderstadt, Chia-Lin Huang, And with special thanks to the FIREBIRD, RBSP-ECT, and Sun-to-Ice Teams

University of New Hampshire Institute for the Study of Earth, Oceans, and Space

AGU Chapman Conference on Particle Dynamics in the Earth's Radiation Belts Cascais, Portugal; Thursday, 8 March 2018, 10:30-10:50

Science Motivation

 "Missing source" of NOx in whole atmosphere climate models (Randall et al., 2015) poses a problem – what is impact of known missing source in middle atmosphere to climatalogy of whole atmosphere?

Figure 1. NO_x from Nov 2003-Mar 2004: a) MIPAS, b) WACCM. Plots show 3-day running average poleward of 70°N. Randall et al. [2015]

- Model is factor of 2-10 too low
- Missing source of NOx
- Models include auroral electrons, galactic cosmic rays, and solar protons – to date, medium energy electrons NOT included
- Might precipitating radiation belt electrons be missing source?

Science Motivation

Goals of our study

- 1. Estimate the global flux and energy spectrum of medium energy radiation belt electrons precipitating into Earth's atmosphere
- 2. Quantify this electron precipitation as a new source for atmospheric ionization
- 3. Incorporate source into global model to assess its effects on atmospheric chemistry

Summary of NSF FIREBIRD-I and -II Missions

Pls: Harlan Spence (UNH) and David Klumpar (MSU)

FB-I LAUNCHED: Dec 6, 2013 VAFB Atlas-5 NROL-39

FB-II Launched late 2015 VAFB Delta-II 7320 NASA SMAP (ELaNA-10)

Provided excellent science results; FU1: 12/13 - 1/14, FU2: 4/14 - 9/14

FIREBIRD-II: Flight Units 3 and 4

Improved version of FB-I mission; Launched and beautiful data since 1/2015

University of New Hampshire Institute for the Study of Earth, Oceans, and Space

FRIRF

FIREBIRD-II Orbit/Data

- 650 x 430km orbit, 99 degree inclination single ground station
- Typically one Morning (~0600-0800) and one evening (~1800-2000) pass per orbit, but morning passes are heavily prioritized
- "Context" data low time/energy resolution minimal volume

Context Data – Campaign 9 Juster Data – Campaign 9

FU4 Context Data (Campaigns 1-9) ~ 1 MeV electrons

 10^{6}

FIREBIRD-II Orbit/Data

- Hi-Res data high time/energy resolution LARGE volume
 - VERY limited HiRes data availability ConOPS uses context data to hunt for proverbial scientific "needles in haystack"

Campaign #	Dates	Primary Science Goal
1	2015/2/1 → 2015/2/21	Spatial Scale of Individual Microbursts
2	2015/3/21 → 2015/4/19	St. Patrick's Day Storm
3	2015/5/16 → 2015/6/15	Van Allen Probes Conjunctions
4	2015/7/3 → 2015/8/4	July 4 th Storm
5	2015/8/8 → 2015/9/4	BARREL Campaign Conjunctions
6	2015/11/15 → 2015/12/15	Conjunctions, Lightning induced precipitation
7	2016/1/15 → 2016/2/3	12.5ms time resolution, EFW and GRIPS conjunctions
8	FU3: 2016/5/20 \rightarrow 2016/6/14 FU4: 2016/6/9 \rightarrow 2016/6/20	50ms time resolution, context and COSI conjunctions
9	2016/8/12 → 2016/9/7	50 ms time resolution, BARREL conjunction. (Currently in data downlink phase)
10	2016/12/21 -> 2017/1/4	12 ms cadence for improved dispersion, caught geomagnetic storm, looking in the bounce loss cone.
11	2017/5/1 -> 2017/5/21	Conjunction event on May 2nd
12	2017/7/1 -> 2017/7/21	RBSP and ARASE conjunctions, July 16 th shock

FIREBIRD-II Comparisons

	SAMPEX	POES	FIREBIRD	Van Allen Probes
Altitude	~600 km	870 km	400 - 600 km	700 km to ~6 Re
Inclination (degree)	82	98.7	82	10
Energies	~ MeVs	> 30 keV > 100 keV > 300 keV	265 keV 354 keV 481 keV 663 keV 913 keV > 1 MeV	10s keV to MeVs (MagEIS)
Challenges	High energies	Proton contamination & sensitivity limit	Sparse	Equatorial "near" loss cone

Identifying Locally Precipitating Flux from FIREBIRD Measurements

- Survey <u>collimated</u> FU2 and FU3 flux data Identify times when FIREBIRD s/c are in the bounce loss cone
- Locate minima in flux oscillations to determine energy-resolved medium energy electrons locally precipitating
- Use energy spectra to calculate ionization (ion pair production) rates as a function of altitude

Estimating Atmospheric Ionization Altitude Profile from FIREBIRD Electron Flux

At first minimum of oscillation in BLC

Characteristic Range of Spectral Shapes (FU3)

Characteristic Range of Spectral Shapes (FU2)

Maximum estimated ion pair production of >50 cm³/s at 75 km

- In at least a few cases, ionization from electrons are large enough to compete with or exceed ionization from typical solar energetic proton events
- Might explain the missing source of NO_x around 60-70 km altitude in models

NSF FIREBIRD: High resolution at critical energies in the loss cone at Low Earth Orbit

NASA Van Allen Probes (RBSP): Continuous coverage in the radiation belts

FB and RBSP-ECT Energetic Electron Flux Comparison at a Conjunction

- 20 high quality conjunctions when in BLC from first 12 FB campaigns
- Estimate flux ratio between MagEIS near loss cone at equator with FB
- Some energy dependence but use average value of ~50; can range to >1000 in some cases
- Appeal to global coherence and use RBSP-ECT data to estimate losses

From Local to Global Estimates

- Create global maps of electron flux / ionization rates as input to 3D climate model (WACCM)
- Choose a few "representative" fluxes -- quiet times, moderate activity, and storms – here we do only one interval when conditions are <u>un-remarkable</u>
- Run the model to see if the ionization is large enough to explain the missing NO_x.

Total Radiation Belt Electron Content

Integrate number of electrons in an elemental phase space:

$$dN \approx 8.134 \times 10^{29} \bar{f}(\mu, K, L^*) \frac{\sqrt{\mu}}{L^{*2}} d\mu dK dL^*.$$

Van Allen Probes ECT-MagEIS TRBEC (μ = 500 - 2000 MeV/G, all k, L^{*} > 2.5) 10³⁰ 2013 Feb-Mar 10²⁹ TRBEC [#] 0²⁸ 10²⁷ 10²⁶ 2013 2014 2015 2016 2017

Electron Long-Quiet Decay Event 2013 February-March

2013 March Electron Long Decay Event (3/4 - 3/14)

Electron Long-Quiet Decay Event 2013 February-March

Electron flux and energy spectrum for simulating RBE impact on atmosphere

Whole Atmosphere Community Climate Model (WACCM)

- Compute the effects of energetic particle precipitation on atmosphere and address the contribution of upper atmospheric dynamics and chemistry to climate
 - Assume RB electron precipitation between L = 3 and 7
 - Atmospheric ionization input: > 50 keV electron flux from 2013 Feb-Mar event (moderate condition)
 - Average flux ratio = 50

Ion Pair Production Rates (cm⁻³ s⁻¹)

WACCM Results

 Northern Hemisphere HOx and NOx enhancements and O3 reductions compared to simulations without radiation belt electrons

70 km 60 km 50 km 40 km 30 km 20 km 3/15/13 4/1/13 4/15/13mol/mol 3/15/13 4/1/13 4/15/13

~50-100% peak enhancements

~2-3% peak reductions

Summary and Future Work

- We estimated radiation belt electron precipitation
 - Ratio between MEO (RBSP-ECT) /LEO (FB) loss cone flux
 - Use TRBEC to identify a "clean" period of loss
 - Use scaled MEO to estimate global e- precipitation flux
- We quantified contribution of radiation belt electron precipitation to middle atmospheric chemistry
 - HOx (few %) and NOx (50-100%) increases; O_3 decrease (few %)
 - NOx increase narrows gap between observations and model, but not clear if enough generally; rad belt e-'s probably important
- Next: Explore times/cases when we can compare datadriven models with simultaneous NOx measurements