Suprathermal Particles at 1 AU and Their Solar Sources
Suprathermal Particles at 1 AU and Their Solar Sources
Abstract:
Particles that have energies of a few times the solar wind plasma energy up to 100s of keV/nuc are called suprathermal particles. Both theoretical and observational studies have revealed that these particles play a critical role as seed particles for further acceleration to higher energies. This may occur either close to the Sun in solar energetic particle (SEP) events, but also locally at 1 AU in, e.g., energetic storm particle events. The multiple origins of these suprathermal particles, from SEPs, Corotating Interaction Regions, shocks and other possible sources, have been investigated only roughly in part because the intensities are generally low. One hypothesis is that in some cases a pool of suprathermal particles can form from high-energy SEPs, accelerated during prior and ongoing solar and interplanetary activity, and then losing energy via adiabatic deceleration as they propagate in the expanding solar wind. Another hypothesis is that suprathermal particles are produced along with the thermal solar wind, but from different physical processes. It is therefore important to examine the relationship, if any, between the suprathermal particle properties with those of possible solar source regions. The Ultra-Low Energy Isotope Spectrometer (ULEIS) on ACE makes regular observations of the suprathermal ion composition and spectra at L1. We compare the measured suprathermal particle properties at 1AU and various solar synoptic maps and coronal models to identify any significant relationship between the two.