T13A-2982
Nuclear Planetology: Constraining the Driving Force in Wegener’s Continental Drift Theory

Monday, 14 December 2015
Poster Hall (Moscone South)
Goetz Roller, Organization Not Listed, Washington, DC, United States
Abstract:
Nuclear planetology [1] is a new research field, which aims at deciphering the nuclear physics processes responsible for the evolution of ultra-substellar objects and the driving force in Wegener’s continental drift theory by means of Re-Os nuclear geochronometry [2]. Terrestrial Re/Os ratios observed within diamond sulphide inclusions [3], compatible with lunar r-process production ratios of Th/U≈1≈Au/Ir [4], drop from ≈0.8 to 0.2–0.05 for nucleogeochronometric ages between 2.3 Ga and 1.4 Ga [5]. It has therefore been argued [5,6] that the Re/Os fractionation is related to a change in oxygen fugacity due to the physics/chemistry of Earth’s core after a possibly Fermi-pressure controlled core collapse [4]. Here, Pd/Ru, Pd/Pt, Pd/Ir, Pd/Os, Ru/Ir, Ru/Os, Pt/Ir or Pt/Os ratios from 24 published H chondrite components [7] are connected to their respective nucleogeochronometric ages to constrain an extended fossil fractionation record over 800 Ma. The following ranges are obtained: 0.06–1.04 (Pd/Ru), 0.06–0.79 (Pd/Pt), 0.06–1.76 (Pd/Os), 0.07–1.94 (Pd/Ir), 1.08–1.99 (Ru/Ir), 0.83–2.41 (Pt/Os), 0.82–2.64 (Pt/Ir). Comparing the Re/Os fractionation pattern of the diamond sulphide inclusions with these results and considering that Re is readily oxidized even at ultra-low oxygen fugacity, it may be concluded that (i) extremely reducing conditions within Earth’s core basically preserve any unfractionated r-process element ratio until today; and (ii) nuclear/quantum physics processes leading to the observed ratios and fractionation pattern are ultimately the driving force in Wegener’s continental drift theory.

[1] Roller (2015), Abstract T34B-0407, AGU Spring Meeting. [2] Roller (2015), Geophys. Res. Abstr. 17, EGU2015-17. [3] Smit et al. (2010), GCA 74, 3292. [4] Roller (2015), Abstract #5041, 78th Ann. Met. Soc. Meeting. [5] Roller (2015), Geophys. Res. Abstr. 17, EGU2015-2399. [6] Roller (2015), Abstract PG34A-0283, AGU Spring Meeting. [7] Horan et al. (2009), GCA 73, 6984.