V32A-02
Simulating maar-diatreme volcanic systems in bench-scale experiments

Wednesday, 16 December 2015: 10:35
310 (Moscone South)
Robin George Andrews1, James D L White1, Tobias Dürig2 and Bernd Zimanowski3, (1)University of Otago, Dunedin, New Zealand, (2)Univ Iceland, Reykjavik, Iceland, (3)University of Würzburg, Würzburg, Germany
Abstract:
Maar-diatreme eruptions are incompletely understood, and explanations for the processes involved in them have been debated for decades. This study extends bench-scale analogue experiments previously conducted on maar-diatreme systems and attempts to scale the results up to both field-scale experimentation and natural volcanic systems in order to produce a reconstructive toolkit for maar volcanoes. These experimental runs produced via multiple mechanisms complex deposits that match many features seen in natural maar-diatreme deposits. The runs include deeper single blasts, series of descending discrete blasts, and series of ascending blasts. Debris-jet inception and diatreme formation are indicated by this study to involve multiple types of granular fountains within diatreme deposits produced under varying initial conditions. The individual energies of blasts in multiple-blast series are not possible to infer from the final deposits. The depositional record of blast sequences can be ascertained from the proportion of fallback sedimentation versus maar ejecta rim material, the final crater size and the degree of overturning or slumping of accessory strata. Quantitatively, deeper blasts involve a roughly equal partitioning of energy into crater excavation energy versus mass movement of juvenile material, whereas shallower blasts expend a much greater proportion of energy in crater excavation.