C54A-01
Increasing positive trend in the Antarctic sea ice extent and associated surface temperature changes

Friday, 18 December 2015: 16:00
3007 (Moscone West)
Josefino C Comiso, NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
The maximum extent of the Antarctic sea ice in 2014 was more than 20 x 106 km2 which is likely the highest during the satellite era. The updated historical record of the sea ice cover, as derived from multichannel passive microwave data, now shows a trend of 2.05 ± 0.18% per decade and 2.70 ± 0.20 % per decade for ice extent and ice area, respectively. This indicates not only a continuation of the positive trend but also a slight increase in the trends reported previously. A newly enhanced sea ice concentration data actually yield slightly more modest trends in the sea ice extent and ice area of 1.55 ± 0.17 % per decade and 2.40 ± 0.20 % per decade, respectively. The difference is mainly due to an improved matching of calibrations in the enhanced data for the different satellite sensors that provide the historical time series. The updated data also show regional shifts in the trends with a decrease in the positive trend in the Ross Sea, a decrease in the negative trend in the Bellingshausen/Amundsen Seas, and an increase in the positive trend in the other sectors. Such shifts undermine the previous hypothesis that the positive trend of Antarctic sea ice is primarily caused by increases in ice production in the Ross Sea. On the other hand, it is observed that surface temperatures for the same period, as derived from satellite data, show a general cooling in areas near the ice margin. Surface temperatures are also shown to be highly correlated with the extent of the sea ice cover. Such results suggests that the assimilation of satellite surface temperature data in numerical climate models may be needed to improve the performance of these models and enable better agreements with the observed trends of sea ice in the Southern Hemisphere.