A42E-05
Trends in atmospheric temperature and winds since 1959

Thursday, 17 December 2015: 11:20
3012 (Moscone West)
Steven C Sherwood, University of New South Wales, Climate Change Research Centre, Sydney, NSW, Australia, Nidhi Nishant, University of New South Wales, Sydney, NSW, Australia and Paul A O'Gorman, Massachusetts Institute of Technology, Cambridge, MA, United States
Abstract:
We present an updated version of the radiosonde dataset homogenized by Iterative Universal Kriging (IUKv2), now extended through February 2013, following the method used in the original version (Sherwood et al 2008 Robust tropospheric warming revealed by iteratively homogenized radiosonde data J. Clim. 21 5336–52). This method, in effect, performs a multiple linear regression of the data onto a structural model that includes both natural variability, trends, and time-changing instrument biases, thereby avoiding estimation biases inherent in traditional homogenization methods. One modification now enables homogenized winds to be provided for the first time. This, and several other small modifications made to the original method sometimes affect results at individual stations, but do not strongly affect broad-scale temperature trends.

Temperature trends in the updated data show three noteworthy features. First, tropical warming is equally strong over both the 1959–2012 and 1979–2012 periods, increasing smoothly and almost moist-adiabatically from the surface (where it is roughly 0.14 K/decade) to 300 hPa (where it is about 0.25 K/decade over both periods), a pattern very close to that in climate model predictions. This contradicts suggestions that atmospheric warming has slowed in recent decades or that it has not kept up with that at the surface. Second, as shown in previous studies, tropospheric warming does not reach quite as high in the tropics and subtropics as predicted in typical models. Third, cooling has slackened in the stratosphere such that linear trends since 1979 are about half as strong as reported earlier for shorter periods; this may be due to the beginning of stratospheric ozone recovery.

Wind trends over the period 1979–2012 confirm a strengthening, lifting and poleward shift of both subtropical westerly jets; the Northern one shows more displacement and the southern more intensification, but these details appear sensitive to the time period analysed. Winds over the Southern Ocean have intensified with a downward extension from the stratosphere to troposphere visible from austral summer through autumn. There is also a trend toward more easterly winds in the middle and upper troposphere of the deep tropics, which may be associated with tropical expansion.