SM53B-01
Our Understanding of Ion Outflows from Earth and Remaining Challenges
Friday, 18 December 2015: 13:40
2016 (Moscone West)
Andrew W Yau, University of Calgary, Calgary, AB, Canada
Abstract:
The discovery of energetic ion beams and conics by Shelley et al. and transversely accelerated ions by Klumpar in the 1970's heralded the extensive satellite, rocket, and radar observations of ion outflows over the past four decades. This body of observation has shaped our contemporary view on ion outflows and their important role in magnetosphere-ionosphere coupling. The variety of ion outflows may be categorized into thermal and suprathermal outflows. Both categories of outflows are strongly influenced by solar EUV irradiance and solar wind energy input, and the state of the magnetosphere, ionosphere, thermosphere, and (at times) plasmasphere. Several important challenges remain in our quest for a fully quantitative, multi-scale understanding of ion outflows. These include the detection of the lowest-energy ions in the tenuous sunlit magnetosphere; the influence of these hidden ions in the magnetosphere; ion transit between low and high altitudes at quiet times; the role of microscale processes; the simultaneous monitoring of different outflow populations and their circulation and redistributions in the magnetosphere; the influence of solar energy input, the thermosphere and the plasmasphere on outflow composition, characteristics, and variability; and the effects of this variability on the coupling between thermal and suprathermal outflows and on the overall magnetosphere-ionosphere coupling.