GC23C-1145
A Centroid Model of Species Distribution to Analyize Multi-directional Climate Change Finger Print in Avian Distribution in North America
Tuesday, 15 December 2015
Poster Hall (Moscone South)
Qiongyu Huang1, John Sauer2 and Ralph Dubayah1, (1)University of Maryland College Park, College Park, MD, United States, (2)usgs patuxent wildlife research center, Laurel, MD, United States
Abstract:
Species distribution shift (or referred to as “fingerprint of climate change”) as a primary mechanism to adapt climate change has been of great interest to ecologists and conservation practitioners. Recent meta-analyses have concluded that a wide range of animal and plant species are already shifting their distribution. However majority of the literature has focused on analyzing recent poleward and elevationally upward shift of species distribution. However if measured only in poleward shifts, the fingerprint of climate change will be underestimated significantly. In this study, we demonstrate a centroid model for range-wide analysis of distribution shifts using the North American Breeding Bird Survey. The centroid model is based on a hierarchical Bayesian framework which models population change within physiographic strata while accounting for several factors affecting species detectability. We used the centroid approach to examine large number of species permanent resident species in North America and evaluated the dreiction and magnitude of their shifting distribution. To examine the inferential ability of mean temperature and precipitation, we test a hypothesis based on climate velocity theory that species would be more likely to shift their distribution or would shift with greater magnitude in in regions with high climate change velocity. For species with significant shifts of distribution, we establish a precipitation model and a temperature model to explain their change of abundance at the strata level. Two models which are composed of mean and extreme climate indices respectively are also established to test the influences of changes in gradual and extreme climate trends.