PP23B-2304
Palynological indications for elevated microbial primary productivity during the Early Toarcian Anoxic Event: Implications for organic-carbon accumulation and the interpretation of δ13C-trends

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Alexander J.P. Houben, Netherlands Organization for Applied Scientific Research, Energy/Geological Survey of the Netherlands, Utrecht, Netherlands
Abstract:
The Early Toarcian Oceanic Anoxic Event (T-OAE, ~182 Ma ago) represents an episode of organic-rich deposition that was accompanied by a substantial (up to 7‰) negative carbon-isotope excursion (CIE), suggesting a perturbation in the carbon cycle likely driven by the addition of "light" carbon to the ocean-atmosphere system. Paired δ13Corg-ratios and hydrogen-indices provide evidence for major changes in organic-matter sourcing which quantitatively affect CIE-magnitude. Underpinning the relationship between this carbon-cycle perturbation, ocean anoxia and primary productivity feedbacks thus remains a major challenge.

We here present palynological- and organic-matter analysis data from outcrop sections in Yorkshire (UK) and three drill-cores from the Netherlands. In addition, elemental ratios and iron speciation data aid to constrain bottom-water oxygenation and euxinia. Stratigraphic calibrations were achieved with high-resolution δ13Corg-data. The iron-speciation and trace-element data indicate that persistent euxinic bottom-water conditions incept at the base of- and remarkably persist after the T-OAE. By employing extremely careful palynological preparation and UV-fluorescence microscopy, we assessed changes in phytoplankton communities and organic-matter types. At the base of the T-OAE a major increase in abundance of prasinophycean vegetative cysts indicates chemocline shoaling into the photic zone. During the T-OAE, all localities are characterized by organic-matter associations dominated by dense Structureless Organic Matter (SOM) that contain abundant characteristic sphaerical palynomorphs.

These results confirm changes in organic-carbon sourcing, which exaggerate the magnitude of the CIE. The palynological and organic-matter data indicate that primary productivity did not collapse and that TOC-accumulations were not merely an effect of inhibited remineralization duirng anoxia. In contrast, we present a scenario in which cyanobacterial anoxygenic photosynthesis proliferated in a stratified and nutritious surface-water environment. Since these patterns are recorded synchronously across large distance, we conclude that the restricted NW-European basin was strongly perturbed by changes in run-off, likely as a consequence of the CIE.