V11D-3086
Heterogeneous Oxidation in Supra-Subduction Settings: Evidence from Forearc Peridotites

Monday, 14 December 2015
Poster Hall (Moscone South)
Suzanne Birner1, Jessica M Warren1 and Elizabeth Cottrell2, (1)Stanford University, Stanford, CA, United States, (2)Smithsonian, NMNH, Washington, DC, United States
Abstract:
The forearc region of subduction zones record the magmatic processes associated with subduction initiation. Volcanics from these regions are well studied, but the forearc lithospheric mantle is less well understood, partly due to the limited number of locations with peridotite exposed in situ. The Tonga and Mariana trenches are non-accretionary convergent margins where peridotites have been collected from the wall of the over-riding plate. These forearc peridotites present a unique opportunity to study the processes associated with subduction initiation from an in-situ source.

Forearc peridotites from both localities show distinct chemical heterogeneity. While all samples are extremely refractory, as evidenced by low modal abundances of clinopyroxene, they differ significantly in terms of mineral compositions and accessory phases. Minerals present in a subset of samples include plagioclase, amphibole, and sulfides. Samples also vary significantly in spinel Cr# and wt% TiO2.

We used the spinel peridotite oxygen barometer of Bryndzia and Wood (1990) to calculate the oxygen fugacity of the samples, calculating Fe3+/ΣFe ratio in spinels using Mössbauer-calibrated electron microprobe analysis. Samples from Mariana as well as one dredge from Tonga record elevated fO2 (1-2 log units above the QFM buffer), similar to results seen from subduction xenoliths. However, three other dredges from Tonga do not show this signature of oxidation, instead trending to high Cr# at a more ridge-like oxidation state (slightly below QFM). We interpret these non-oxidized values to be representative of primary mantle at the earliest stages of subduction, suggesting that sub-arc mantle is not oxidized prior to arc initiation. Elevated oxidation signatures then develop once this primary mantle interacts with arc-like melts and fluids related to dehydration of the subducting slab.