IN13B-1830
WC WAVE - Integrating Diverse Hydrological-Modeling Data and Services Into an Interoperable Geospatial Infrastructure

Monday, 14 December 2015
Poster Hall (Moscone South)
William B Hudspeth, Earth Data Analysis Center, Albuquerque, NM, United States
Abstract:

WC WAVE (Western Consortium for Watershed Analysis, Visualization and Exploration) is a collaborative research project between the states of Idaho, Nevada, and New Mexico that is funded under the National Science Foundation's Experimental Program to Stimulate Competitive Research (EPSCoR). The goal of the project is to understand and document the effects of climate change on interactions between precipitation, vegetation growth, soil moisture and other landscape properties. These interactions are modeled within a framework we refer to as a virtual watershed (VW), a computer infrastructure that simulates watershed dynamics by linking scientific modeling, visualization, and data management components into a coherent whole.

Developed and hosted at the Earth Data Analysis Center, University of New Mexico, the virtual watershed has a number of core functions which include: a) streamlined access to data required for model initialization and boundary conditions; b) the development of analytic scenarios through interactive visualization of available data and the storage of model configuration options; c) coupling of hydrological models through the rapid assimilation of model outputs into the data management system for access and use by sequent models. The WC-WAVE virtual watershed accomplishes these functions by provision of large-scale vector and raster data discovery, subsetting, and delivery via Open Geospatial Consortium (OGC) and REST web service standards. Central to the virtual watershed is the design and use of an innovative array of metadata elements that permits the stepwise coupling of diverse hydrological models (e.g. ISNOBAL, PRMS, CASiMiR) and input data to rapidly assess variation in outcomes under different climatic conditions. We present details on the architecture and functionality of the virtual watershed, results from three western U.S. watersheds, and discuss the realized benefits to watershed science of employing this integrated solution.