U24A-06
Changes in Global Silicate Weathering Feedbacks over Phanerozoic Time
Tuesday, 15 December 2015: 17:15
3002 (Moscone West)
A. Joshua West, University of Southern California, Los Angeles, CA, United States
Abstract:
The release of carbon from the solid Earth exerts a first-order control on the evolution of the planetary environment. This basic climate forcing is modulated by a host of chemical reactions at the Earth’s surface, the pace of which are in turn regulated by tectonic forces. Together, these various pieces in the puzzle of the global carbon cycle have been identified for decades, but understanding of how they fit together has remained elusive and continues to be much debated. In particular, we now know the climate-dependence of silicate mineral weathering may vary as a function of denudation rate, which is related to tectonic drivers. This variation suggests that the strength of the weathering feedback may have varied in the past, with consequent implications for the past state of global climate. This work will survey and synthesize approaches to representing changes in the weathering feedback, showing that relatively simple parameterizations yield similar results as recently developed reactive transport approaches. This similarity gives confidence in applying the simple parameterizations to reconstructing changes in feedback strength in the geologic past, at least over Phanerozoic timescales, and allows inclusion of this effect explicitly in carbon cycle models.