B11N-03
Drought, Fire and Insects in Western US Forests: Observations to Improve Regional Land System Modeling
Monday, 14 December 2015: 08:30
2010 (Moscone West)
Beverly Elizabeth Law1, Zhenlin Yang1, Logan T. Berner1, Jeffrey A Hicke2, Polly Buotte2 and Tara W Hudiburg3, (1)Oregon State University, Corvallis, OR, United States, (2)University of Idaho, Moscow, ID, United States, (3)University of Idaho, Forest, Rangeland, and Fire Sciences, Moscow, ID, United States
Abstract:
Drought, fire and insects are major disturbances in the western US, and conditions are expected to get warmer and drier in the future. We combine multi-scale observations and modeling with CLM4.5 to examine the effects of these disturbances on forests in the western US. We modified the Community Land Model, CLM4.5, to improve simulated drought-related mortality in forests, and prediction of insect outbreaks under future climate conditions. We examined differences in plant traits that represent species variation in sensitivity to drought, and redefined plant groupings in PFTs. Plant traits, including sapwood area: leaf area ratio and stemwood density were strongly correlated with water availability during the ecohydrologic year. Our database of co-located observations of traits for 30 tree species was used to produce parameterization of the model by species groupings according to similar traits. Burn area predicted by the new fire model in CLM4.5 compares well with recent years of GFED data, but has a positive bias compared with Landsat-based MTBS. Biomass mortality over recent decades increased, and was captured well by the model in general, but missed mortality trends of some species. Comparisons with AmeriFlux data showed that the model with dynamic tree mortality only (no species trait improvements) overestimated GPP in dry years compared with flux data at semi-arid sites, and underestimated GPP at more mesic sites that experience dry summers. Simulations with both dynamic tree mortality and species trait parameters improved estimates of GPP by 17-22%; differences between predicted and observed NEE were larger. Future projections show higher productivity from increased atmospheric CO2 and warming that somewhat offsets drought and fire effects over the next few decades. Challenges include representation of hydraulic failure in models, and availability of species trait and carbon/water process data in disturbance- and drought-impacted regions.