MR41D-2670
3D Printing Carbonate Microstructures: Preliminary Porosity-Permeability Trends with Applications to the Decarbonation Reaction

Thursday, 17 December 2015
Poster Hall (Moscone South)
Dulcie Aileen Head, Stanford University, Stanford Rock Physics Laboratory (SRPL), Geophysics Department, Stanford, CA, United States and Tiziana Vanorio, Stanford University, Geophysics Department, Stanford, CA, United States
Abstract:
The advent of modern 3D printing has provided an unprecedented opportunity to combine the strengths of two of the main approaches used in rock physics analysis - digital and experimental. In the laboratory we can explore still unknown frontiers of rock behaviour, and in digital rock physics each sample and experiment is fully reproducible at a minute, detailed scale. Bringing these two techniques together and applying both to the same rock volumes has become more important than ever as we add layers of complexity to both models and experiments in an attempt understand the coupled thermo-chemo-mechanical changes controlling transport and elastic properties of carbonate diagenesis.

In this study, we take a two-pronged approach. First, we investigate the effect of changing the size of a specific natural carbonate pore geometry on the frame independent properties porosity and permeability and compare the laboratory measurements to the results of numerical simulations. These preliminary tests show that it is possible to use an iterative, grain-scale geometry modification and measurement workflow that utilizes 3D printing. Second, we induce the decarbonation reaction in a carbonate deposit injected with silicate-bearing fluids in a temperature-pressure space not previously explored. These results show that we can quantify changes to the acoustic and transport properties of the sample when exposed to such diagenetic conditions.

Ultimately we will use a workflow designed to iteratively combine baseline CT-scanned rock volumes, experimentally derived boundary conditions for and modifications to the digital rock volumes, and measurements on 3D printed rock models in order to test hypotheses about grain-scale changes on bulk sample properties.