EP43C-02
The Connection Between Sediment Supply and Paired Strath Terrace Formation at Arroyo Seco, CA, USA.

Thursday, 17 December 2015: 13:55
2005 (Moscone West)
Noah J Finnegan, University of California Santa Cruz, Santa Cruz, CA, United States
Abstract:
Although wide, longitudinally traceable, paired strath terraces in river canyons are frequently argued to reflect periods of higher sediment supply, there is no consensus on how changes in sediment supply translate into dramatic changes in valley morphology. Here, quantitative analysis of LiDAR data is combined with field observations in Arroyo Seco, in the Santa Lucia Range of Central California, to develop a conceptual model for paired bedrock terrace formation and its connection to sediment supply.

The most recently formed bedrock terrace in Arroyo Seco grades onto a prominent alluvial fan surface, suggesting that planation of straths in Arroyo Seco occurs as downstream alluvial fans aggrade. This aggradation apparently buffers Arroyo Seco’s bedrock channel from base level fall on the Reliz Canyon Fault, which separates the bedrock and alluvial sections of the river. Notably, despite the fact that bedrock terraces grade smoothly onto alluvial fan surfaces, the deep aggradation of sediment downstream is not seen upstream in bedrock channel sections. Gravel on straths is typically only 0.5-1 m thick. Instead, excess gravel appears to be accommodated by the lateral planation of the wide strath itself. LiDAR evidence suggests that strath planation is associated with braiding, which is often triggered by increases in sediment supply. Given the high lateral mobility of braided streams and the extremely fractured (and hence easily detached) mudstone valley walls along Arroyo Seco, braiding provides a simple connection between sediment supply and lateral planation in Arroyo Seco.

In Arroyo Seco, fan incision (under decreased sediment supply) should exhume a bedrock step whose height represents the accumulated fault slip during fan aggradation. The upstream propagation of this exhumed step as a knickpoint provides a simple mechanism to connect drops in sediment supply to rapid vertical incision, valley narrowing and strath terrace formation. Long profile data for Arroyo Seco shows clear evidence that the last two generations of strath terraces terminate upstream at knickpoints.

OSL dating (Taylor and Sweetkind, 2014) constrains the formation of the two most recent strath terraces to the last ~ 35 kyr, implying at least two reductions in sediment supply relative to capacity during this interval.