Coupling between pre-onset flows and substorm onset waves

Thursday, 17 December 2015: 16:15
2018 (Moscone West)
Toshi Nishimura1, Larry R Lyons1, Vassilis Angelopoulos2, Eric Donovan3 and Stephen B Mende4, (1)University of California Los Angeles, Los Angeles, CA, United States, (2)University of California Los Angeles, Earth, Planetary, and Space Sciences, Los Angeles, CA, United States, (3)University of Calgary, Calgary, AB, Canada, (4)University of California Berkeley, Berkeley, CA, United States
A critical, long-standing problem in substorm research is identification of the sequence of events leading to substorm expansion phase onset. Recent THEMIS all-sky imager (ASI) array observations have shown a repeatable pre-onset sequence, which is initiated by a poleward boundary intensification (PBI) and is followed by auroral streamers moving equatorward (earthward flow in the plasma sheet) and then by substorm onset. On the other hand, substorm onset is also preceded by azimuthally propagating waves, indicating a possible importance of wave instability for triggering substorm onset. However, it has been difficult to identify the link between fast flows and waves. We have found an isolated substorm event that was well-instrumented with the Poker Flat incoherent scatter radar (PFISR), THEMIS white-light ASI, and multi-spectral ASI, where the auroral onset occurred within the PFISR and ASI fields-of-view. This substorm onset was preceded by a PBI, and ionospheric flows propagated equatorward from the polar cap, crossed the PBI and reached the growth phase arc. This sequence provides evidence that flows from open magnetic field lines propagate across the open-closed boundary and reach the near-Earth plasma sheet prior to the onset. Quasi-stable oscillations in auroral luminosity and ionospheric density are found along the growth phase arc. These pre-onset auroral waves amplified abruptly at the onset time, soon after the equatorward flows reached the onset region. This sequence suggests a coupling process where pre-existing stable waves in the near-Earth plasma sheet interact with flows from further downtail and then evolve to onset instability.