AE12A-05
Where are the lightning hotspots on Earth?

Monday, 14 December 2015: 11:20
3001 (Moscone West)
Rachel I Albrecht1, Steven J Goodman2, Dennis Edward Buechler3, Richard J Blakeslee4 and Hugh J Christian Jr3, (1)Universidade de São Paulo, São Paulo, Brazil, (2)NOAA NESDIS, GOES-R Program Office, Greenbelt, MD, United States, (3)University of Alabama in Huntsville, Huntsville, AL, United States, (4)NASA Marshall Space Flight Center, Huntsville, AL, United States
Abstract:
The first lightning observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded lightning signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) lightning data base over the tropics.

We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total lightning climatology. This detailed very high resolution climatology is used to identify the Earth’s lightning hotspots and other regional features. Earlier studies located the lightning hotspot within the Congo Basin in Africa, but our very high resolution lightning climatology found that the highest lightning flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top lightning hotspot, it comes in a close second and it is the continent with the highest number of lightning hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of lightning maxima, along with a ranking of the highest five hundred lightning maxima, focusing discussion on each continent’s 10 highest lightning maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development.

These results are especially relevant in anticipation of the upcoming availability of continuous total lightning observations from the Geostationary Lightning Mapping (GLM) aboard GOES-R. This study provides context to forecasters as to total lightning activity and locations within GLM field of view as well as around the world.