T12A-03
A Case for Historic Joint Rupture of the San Andreas and San Jacinto Faults

Monday, 14 December 2015: 10:50
306 (Moscone South)
Julian Lozos, Stanford University, Stanford, CA, United States
Abstract:
The ~M7.5 southern California earthquake of 8 December 1812 ruptured the San Andreas Fault from Cajon Pass to at least as far north as Pallet Creek (Biasi et al., 2002). The 1812 rupture has also been identified in trenches at Burro Flats to the south (Yule and Howland, 2001). However, the lack of a record of 1812 at Plunge Creek, between Cajon Pass and Burro Flats (McGill et al., 2002), complicates the interpretation of this event as a straightforward San Andreas rupture. Paleoseismic records of a large early 19th century rupture on the northern San Jacinto Fault (Onderdonk et al., 2013; Kendrick and Fumal, 2005) allow for alternate interpretations of the 1812 earthquake.

I use dynamic rupture modeling on the San Andreas-San Jacinto junction to determine which rupture behaviors produce slip patterns consistent with observations of the 1812 event. My models implement realistic fault geometry, a realistic velocity structure, and stress orientations based on seismicity literature. Under these simple assumptions, joint rupture of the two faults is the most common behavior. My modeling rules out a San Andreas-only rupture that is consistent with the data from the 1812 earthquake, and also shows that single fault events are unable to match the average slip per event for either fault. The choice of nucleation point affects the details of rupture directivity and slip distribution, but not the first order result that multi-fault rupture is the preferred behavior.

While it cannot be definitively said that joint San Andreas-San Jacinto rupture occurred in 1812, these results are consistent with paleoseismic and historic data. This has implications for the possibility of future multi-fault rupture within the San Andreas system, as well as for interpretation of other paleoseismic events in regions of complex fault interactions.