V33D-3120
Timing and processes for exhumation of HP/LT rocks of the southern Brooks Range (AK): Insight from combined geochemistry and 40Ar/39Ar thermochronology of white mica

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Tim O'Brien1, Elizabeth L Miller1, Marty J Grove2 and Leslie A Hayden3, (1)Stanford University, Stanford, CA, United States, (2)Stanford University, Geological and Environmental Sciences, Stanford, CA, United States, (3)USGS California Water Science Center Menlo Park, Menlo Park, CA, United States
Abstract:
The obduction of an island arc onto the Arctic Alaska continental margin in the Jura-Cretaceous led to southward subduction of continental crust and high-pressure/low-temperature (HP/LT) epidote-blueschist facies metamorphism in the southern Brooks Range (BR). A regionally developed greenschist facies normal-sense shear zone system along the southern margin of the BR suggests that extensional faulting had an influential role in the exhumation of the metamorphic core. To better constrain the exhumation history of the metamorphic core of the BR, samples were collected from a N-S transect through the metamorphic core of the orogen. Electron microprobe (EMP) analyses of white micas reveal that they are composed of phengite (Si > 3.0 pfu) or a combination of phengite + paragonite. Si-content of phengites reveal a southward increase in Si from 3.1 to 3.4 pfu (corresponding to an increase in pressure). Si-contents in higher-P phengites are scattered, reflecting subsequent muscovite growth. The Si trend is matched by a southward increase in the 40Ar/39Ar total gas ages of white micas. Phengite from the north are characterized by younger ages (~115 Ma) and flatter 40Ar/39Ar spectra. Farther south, phengites and paragonites yield older 40Ar/39Ar ages. These samples yield convex, staircase 40Ar/39Ar spectra that initiate ~115-120 Ma and flatten-out ~130-138 Ma. Modeling using MacArgon proposes that an initial cooling of HP/LT metamorphism occurred ~130-138 Ma, recorded in the high-Si phengites and paragonites. Following initial cooling, modeling suggests HP/LT rocks stalled in the greenschist facies field before subsequent exhumation, resulting in the staircase 40Ar/39Ar spectra. Flatter 40Ar/39Ar spectra recorded by the northern samples and modeling of 40Ar/39Ar results from the southern samples suggest that these rocks from metamorphic core of the BR were exhumed to temperatures < 300°C by ~115 Ma.