SM51F-04
EMIC Waves in the Inner Magnetosphere

Friday, 18 December 2015: 08:42
2018 (Moscone West)
Maria Usanova, University of Colorado at Boulder, Boulder, CO, United States
Abstract:
Electromagnetic ion cyclotron (EMIC) wave excitation in the inner magnetosphere has been the focus of extensive study over the past few decades, not only because of the role played by EMIC waves in ring current dynamics but also because of their potential importance for scattering radiation belt electrons into the atmosphere. Theory predicts that regions of enhanced cold dense plasma density embedded in relatively low background magnetic field (such as the outer equatorial plasmasphere or plasmaspheric plumes) should aid EMIC wave growth. Also, enhanced plasma density lowers the energy threshold for the resonant pitch angle scattering of outer radiation belt electrons such that EMIC waves can interact with electrons with energies below 1 MeV and hence could be a potentially important radiation belt loss mechanism. EMIC wave normal angle and polarization are also important properties that control the efficiency of their interaction with energetic particles. We will review recent statistical and single-event studies and focus on new understanding of EMIC wave characteristics and generation mechanisms in the inner equatorial magnetosphere – information extremely important for understanding energetic particle dynamics and in particular, for radiation belt and ring current modeling.