C24A-02
Climatic Slow-down of the Pamir-Karakoram-Himalaya Glaciers Over the Last 25 Years

Tuesday, 15 December 2015: 16:15
3007 (Moscone West)
Amaury Dehecq1, Noel Gourmelen2 and Emmanuel Trouvé1, (1)LISTIC / Université de Savoie, Annecy-Le-Vieux, France, (2)University of Edinburgh, Edinburgh, EH9, United Kingdom
Abstract:
Climate warming over the 20th century has caused drastic changes in mountain glaciers globally, and of the Himalayan glaciers in particular. The stakes are high; glaciers and ice caps are the largest contributor to the increase in the mass of the world's oceans, and the Himalayas play a key role in the hydrology of the region, impacting on the economy, food safety and flood risk. Partial monitoring of the Himalayan glaciers has revealed a contrasted picture; while many of the Himalayan glaciers are retreating, in some cases locally stable or advancing glaciers in this region have also been observed. Several studies based on field measurements or remote sensing have shown a dominant slow-down of mountain glaciers globally in response to these changes. But they are restricted to a few glaciers or small regions and none has analysed the dynamic response of glaciers to climate changes at regional scales.

Here we present a region-wide analysis of annual glacier flow velocity covering the Pamir-Karakoram-Himalaya region obtained from the analysis of the entire archive of Landsat data. Over 90% of the ice-covered regions, as defined by the Randolph Glacier Inventory, are measured, with precision on the retrieved velocity of the order of 4 m/yr. The change in velocities over the last 25 years will be analysed with reference to regional glacier mass balance and topographic caracteristics. We show that the first order temporal evolution of glacier flow mirrors the pattern of glacier mass balance. We observe a general decrease of ice velocity in regions of known ice mass loss, and a more complex patterns consisting of mixed acceleration and decrease of ice velocity in regions that are known to be affected by stable mass balance and surge-like behavior.