T24C-05
Effects of Two Subducting Slabs on the Temperature Distribution Along the Subduction Faults in the Kanto Region, Japan
Tuesday, 15 December 2015: 17:00
304 (Moscone South)
Ikuko Wada, University of Minnesota, Minneapolis, MN, United States and Jiangheng He, Pacific Geoscience Centre, Geological Survey of Canada, Sidney, BC, Canada
Abstract:
In this study, we investigate the thermal effects of subduction of two oceanic plates in the Kanto region of Japan, using a 3-D numerical thermal model. The Kanto region lies in the forearc of a subduction system, where the Pacific (PAC) plate and the Philippine Sea (PHS) plate subduct beneath the North American (NA) plate. In a typical subduction setting with one subducting slab, the motion of the slab drives solid-state mantle flow in the overlying mantle wedge, and the flow brings in hot mantle from the backarc towards the forearc. In the Kanto region, however, the presence of the PHS plate between the overlying NA plate and the subducting PAC plate prevents a typical mantle flow pattern. We developed a 3-D thermal model for the Kanto region to simulate the pattern of mantle wedge flow and to quantify its effect on the thermal structure. The model incorporates realistic slab geometries that were delineated from seismological studies. Mantle wedge flow between the PHS slab and the overlying NA plate is expected to be subdued due to the small space and the relatively slow subduction of the PHS slab. We simplify the model by incorporating the results of a 2-D thermal modeling for the subduction of the PHS slab as part of boundary conditions in the 3-D model to approximate the effect of the subdued mantle wedge flow and the subduction of the PHS slab. We use geophysical observations as constraints for the 3-D thermal model and estimate the temperature distributions along the subduction plate interfaces. The model predicts a particularly cold condition in the central part of the Kanto region where the PAC and PHS slabs are in contact with one another, consistent with the observed deeper extent of seismicity along the subduction faults compared to the neighboring regions.