DI14A-05
On Dislocation Glide in Planetary Interiors

Monday, 14 December 2015: 17:00
301 (Moscone South)
Patrick Cordier, University of Lille 1, Villeneuve d'Ascq, France
Abstract:
The dynamics of hot planets depends strongly on how heat is transported to their surfaces through large scale convection flows. This is ultimately controlled by the rheology of high-pressure phases under extreme conditions. Whenever solid rocks are concerned, plastic flow results from the propagation of crystal defects (point defects, dislocations, grain boundaries). In this presentation we focus on the role of pressure on dislocation glide which is usually the most efficient strain-producing mechanism.

Dislocation glide is assessed through multiscale numerical modeling. First, dislocations are modeled at the atomic scale based on first-principles calculations to incorporate the influence of pressure. Then the mobility law of dislocation at finite temperature is modeled by describing thermally-activated mechanisms for dislocation glide based on the kink-pair model. Then the flow stress at the grain scale is deduced either from application of the Orowan equation or by dislocation dynamics modeling. This approach is applied to wadsleyite, ringwoodite, bridgmanite and post-perovskite. Mechanical properties are either calculated at laboratory strain-rates to be compared with experiments when available or at mantle strain-rate to assess their efficiency under natural conditions.