On the cooling of a deep terrestrial magma ocean

Monday, 14 December 2015
Poster Hall (Moscone South)
Julien Monteux1, Denis Andrault1 and Henri Samuel2, (1)Laboratoire Magmas et Volcans, Clermont-Ferrand, France, (2)IRAP, Toulouse, France
In its early evolution, the Earth mantle likely experienced several episodes of complete melting enhanced by giant impact heating, short-lived radionuclides heating and viscous dissipation during the metal/silicate separation. We have developed numerical models to monitor the thermo-chemical evolution of a cooling and crystallizing magma ocean from an initially fully molten mantle. For this purpose, we use a 1D approach accounting for turbulent convective heat transfer. Our numerical model benchmarked with analytical solutions solves the heat equation in spherical geometry. This model also integrates recent and strong experimental constraints from mineral physics such as adiabatic temperature profiles and liquidus/solidus up 140 GPa for different mantle compositions. Our preliminary results show that a deep magma ocean starts to crystallize rapidly after its formation. The cooling efficiency of the magma ocean is strongly dependent on the coupling with the core cooling. Hence, depending on the thermal boundary layer thickness at the CMB, the thermal coupling between the core and magma ocean can either insulate the core during the MO solidification and favor a hot core, generate the formation of a thin basal molten layer or empty the heat from the core. Then, once the melt fraction reaches a critical value, the cooling efficiency becomes limited.