H14C-02
Urban landscapes and the western drought
Monday, 14 December 2015: 16:15
3020 (Moscone West)
Diane E Pataki, University of Utah, Salt Lake City, UT, United States
Abstract:
Cities in the western U.S. are heavily irrigated and have increasingly been the focus of water conservation measures. Even cities that previously relied only on voluntary reductions in outdoor water use have been employing stricter mandates to limit irrigation. These cities are in a period of transition and the outcomes are far from certain. There are many tradeoffs in the environmental and social consequences of different urban water management strategies. Here we review recent work studying these tradeoffs in cities of southern California and Utah. We have measured the water use of different types of landscapes ranging from turfgrass to urban trees to xeriscapes. Unshaded turfgrass shows evapotranspiration (ET) rates close to potential ET; however, shaded turfgrass uses substantially less water. On the other hand, plants used in xeriscapes may have surprisingly high transpiration rates if they are heavily watered. In addition, unshaded xeriscapes may substantially alter surface energy balance and have unintended consequences for urban climate. Through whole tree sap flux measurements and scaling of ET estimates, we have found that urban trees generally use less water than turfgrass, and provide additional cooling benefits through interception of radiation. Current measures to reduce outdoor water use through irrigation restrictions and turfgrass removal programs do not include safeguards to ensure that urban trees receive adequate irrigation, and the future of urban tree canopies in western cities is highly uncertain. Although trees and other deep-rooted vegetation may require less irrigation than turfgrass and better withstand periods of drought, this vegetation must still be appropriate managed with water inputs informed by an understanding of plant water relations and urban subsurface hydrology. On the current trajectory, cities may see a substantial loss of vegetative cover and leaf area unless an understanding of ecohydrology is better integrated into strategies for long-term stewardship of urban landscapes in a changing climate.