MR41C-2643
Factors Controlling Wellbore Imaging of Fractures
Thursday, 17 December 2015
Poster Hall (Moscone South)
Mohammed M Al-Fahmi and Joe A Cartwright, University of Oxford, Oxford, United Kingdom
Abstract:
There are many scientific and engineering methods in petroleum industry for collecting data about small fractures in subsurface. The acquired data is predominantly indirect, and constrained by the bounds of technology and the subtle nature of small fractures. Among the various data types, cores and wellbore images reliably provide the data to observe small fractures, and help characterize important fracture properties such as density, geometry and aperture. There is, however, a major uncertainty about how thorough is the illustration of the small fractures in the wellbore electrical images which are widely used instead of cutting core for practical and economical grounds. We present novel results to help with understanding the potential and limits of wellbore electrical imagers to detect small fractures. We compare and discuss observations from high-quality microresistivity images and their equivalent core samples that are obtained from sub-horizontal wells drilled into carbonate hydrocarbon reservoirs in eastern Arabia. We observed that the wellbore images give limited and inconsistent fracture sampling. The reduction in fracture sampling is related to the fracture nature that defies the imager-resolution capacity. We propose that the imaging capacity is constrained by: 1) degree of fracture roughness, 2) contrast between resistivity and conductivity of the geologic features, 3) effective stress action that is increasing and decreasing fracture aperture, and 4) fracture intake of drilling fluids under a variable fluid pressure balancing between wellbore and reservoir. The wellbore imaging outcomes influence fracture studies, particularly the areas of measuring static and dynamic properties of reservoir fractures and estimating trends and magnitudes of
in situ stress.