A12B-02
On the role of circulation changes in future Northern Hemisphere hydroclimate change

Monday, 14 December 2015: 10:35
3006 (Moscone West)
Richard Seager, Lamont Doherty Earth Obs, Palisades, NY, United States, Mingfang Ting, Lamont Doherty Earth Observ, Palisades, NY, United States, Isla Simpson, National Center for Atmospheric Research, Boulder, CO, United States and Tiffany Shaw, University of Chicago, Chicago, IL, United States
Abstract:

The "dry-get-drier, wet-get-wetter", otherwise known as "rich-get-richer, poor-get-poorer" concept of the hydrological cycle response to rising greenhouse gases was a major advance in terms of perception of climate change in the research community and the winder public. It provides a good description of hydroclimate change in many regions but especially over the oceans. Here there is a clear divide between wet regions, with positive precipitation minus evaporation (P-E), and dry regions with negative P-E. However over land, long term P-E is either zero or positive and balanced by streamflow and it is not so simple to divide between wet and dry regions. What is more, the simple wet-get-wetter, dry-get-drier paradigm is based only on thermodynamics with rising humidity causing increased amplitude of moisture convergence and moisture divergence and, hence, larger variations in P-E. It is now being realized more and more that changes in atmospheric circulation can also drive changes in moisture convergence/divergence and that a full explanation of hydrological cycle change requires attention to circulation change. This will be illustrated with reference to North America and the Mediterranean region. In both case changes in the mean circulation are important drivers of regional hydroclimate change. Model-projected North American hydroclimate change in winter is strongly influenced by a lengthening of the zonal scale of intermediate-scale stationary waves forced by extratropical heating. Wetting at the west coast, drying in the interior southwest and wetting at the US east coast are stronger in models that have a climatological wave field that exaggerates these waves than in models that have more realistic amplitude wave fields. Intense Mediterranean region drying in both summer and winter is also explained in part by shifts towards regional high pressure that, as of now, have not been fully explained. In neither southwest North America nor the Mediterranean, despite the importance of storm systems in delivering moisture to the regions, is projected drying caused by reduced transient eddy moisture convergence. Instead thermodynamic drying and mean flow changes share the responsibility for shifting the regions to drier, more water-stressed, climates.