G44A-02
Progress on the CWU READI Analysis Center

Thursday, 17 December 2015: 16:15
2002 (Moscone West)
Timothy Ian Melbourne1, Walter Michael Szeliga1, Victor M Santillan2 and Craig Scrivner1, (1)Central Washington University, Ellensburg, WA, United States, (2)Central Washington Univ, Ellensburg, WA, United States
Abstract:
Real-time GPS position streams are desirable for a variety of seismic monitoring and hazard mitigation applications. We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor that produces independent estimations of carrier phase integer biases and other parameters. Positions are then estimated using a short-arc approach and algorithms from JPL’s GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built aggregation-distribution software based on RabbitMQ messaging platform. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, displacement vector fields, and map-view, contoured, peak ground displacement. This Java-based front-end is available for download through the PANGA website.

We are currently analyzing 80 PBO and PANGA stations along the Cascadia margin and gearing up to process all 400+ real-time stations that are operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition, we have developed a Kalman filter to combine CWU real-time PPP solutions with those from Scripps Institute of Oceanography’s PPP-AR real-time solutions as well as real-time solutions from the USGS. These combined products should improve the robustness and reliability of real-time point-position streams in the near future.