P53B-2110
Global Surface Temperatures of the Moon

Friday, 18 December 2015
Poster Hall (Moscone South)
Jean-Pierre Williams1, David A Paige1, Elliot Sefton-Nash2 and Benjamin T Greenhagen3, (1)University of California Los Angeles, Los Angeles, CA, United States, (2)Birkbeck, University of London, London, United Kingdom, (3)Applied Physics Laboratory Johns Hopkins, Laurel, MD, United States
Abstract:
The Diviner instrument aboard the Lunar Reconnaissance Orbiter (LRO) is providing the most comprehensive view of how regoliths on airless body store and exchange thermal energy with the space environment. Approximately a quarter trillion calibrated radiance measurements of the Moon, acquired over 5.5 years by Diviner, have been compiled into a 0.5° resolution global dataset with a 0.25 hour local time resolution. Maps generated with this dataset provide a global perspective of the surface energy balance of the Moon and reveal the complex and extreme nature of the lunar surface thermal environment.

Daytime maximum temperatures are sensitive to the radiative properties of the surface and are ~387–397 K at the equator, dropping to ~95 K before sunrise. Asymmetry between the morning and afternoon temperatures is observed due to the thermal inertia of the regolith with the dusk terminator ~30 K warmer than the dawn terminator at the equator. An increase in albedo with incidence angle is required to explain the observed temperatures with latitude. At incidence angles >40° topography and surface roughness result in increasing anisothermality between spectral passbands and scatter in temperatures. Minimum temperatures reflect variations in thermophysical properties (Figure).

Impact craters are found to modify regolith properties over large distances. The thermal signature of Tycho is asymmetric consistent with an oblique impact coming from the west. Some prominent crater rays are visible in the thermal data and require material with a higher thermal inertial than nominal regolith. The influence of the formation of the Orientale basin on the regolith properties is observable over a substantial portion of the western hemisphere despite its age (~3.8 Gyr), and may have contributed to mixing of highland and mare material on the southwest margin of Oceanus Procellarum where the gradient in radiative properties at the mare-highland contact are observed to be broad (~200 km).