Microbial Indicators, Pathogens, and Antibiotic Resistance in Groundwater Impacted by Animal Farming: Field Scale to Basin Scale

Monday, 14 December 2015: 16:00
3016 (Moscone West)
Thomas Harter1, Xunde Li1, E. Rob Atwill1 and Aaron Ian Packman2, (1)University of California Davis, Davis, CA, United States, (2)Northwestern University, Evanston, IL, United States
Several surveys of microbial indicators and pathogens were conducted to determine the impact of confined animal farming operations (CAFOs) on shallow, local, and regional groundwater quality in the Central Valley aquifer system, California. The aquifer system consists of highly heterogeneous, alluvial, unconsolidated coarse- to fine-grained sediments and is among the largest aquifers in the U.S.. Overlying landuse includes 3 million ha of irrigated agriculture and 1.7 million mature dairy cows in nearly 1,500 CAFOs. A multi-scale survey of water-borne indicator pathogens (Enterococcus spp. and generic E. coli) and of three water-borne pathogens (Campylobacter, Salmonella, and E. coli O157:H7) was conducted at five different spatial scales, increasing with distance from animal sources of these enteric microbial organisms: moist surfaces within individual CAFO sub-systems (calf-hutches, heifer corrals, mature cow stalls, hospital barn etc.), first encountered (shallow) groundwater immediately below these sub-systems, production aquifer below CAFOs, production aquifer near CAFOs, and production aquifer away from CAFOs. Where found, indicator pathogens were tested for antibiotic resistance. Hundreds of samples were collected at each scale: continuously during irrigation events and seasonally over a multi-year period at the three smaller site-scales; and in a one-time survey at the two larger, regional scales. All three pathogens were frequently detected in moist surface samples across CAFO sub-systems, albeit at concentrations several orders of magnitude lower than enteric indicators. Two of the three pathogens (but not Campylobacter) were also detected in first encountered groundwater, at 3-9 m below ground surface, in 1% of samples. No pathogens were found at the production aquifer scales. Generic E. coli was detected in ¼ of first encountered groundwater samples, and in 4% of production aquifer samples, while Enterococcus spp. was ubiquitously present across the three site scales on CAFOs and in ¼ of production aquifer samples near and away from CAFOs. Two thirds of E. coli and five in six Enterococcus exhibited resistance to multiple (> 2) antibiotics. Field monitoring results are consistent with fate and transport modeling that accounts for heterogeneity in aquifer systems.